Suppr超能文献

雷达信号处理及其对深度学习驱动的人类活动识别的影响。

Radar Signal Processing and Its Impact on Deep Learning-Driven Human Activity Recognition.

作者信息

Ayaz Fahad, Alhumaily Basim, Hussain Sajjad, Imran Muhammad Ali, Arshad Kamran, Assaleh Khaled, Zoha Ahmed

机构信息

James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

Department of Electrical and Computer Engineering, College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates.

出版信息

Sensors (Basel). 2025 Jan 25;25(3):724. doi: 10.3390/s25030724.

Abstract

Human activity recognition (HAR) using radar technology is becoming increasingly valuable for applications in areas such as smart security systems, healthcare monitoring, and interactive computing. This study investigates the integration of convolutional neural networks (CNNs) with conventional radar signal processing methods to improve the accuracy and efficiency of HAR. Three distinct, two-dimensional radar processing techniques, specifically range-fast Fourier transform (FFT)-based time-range maps, time-Doppler-based short-time Fourier transform (STFT) maps, and smoothed pseudo-Wigner-Ville distribution (SPWVD) maps, are evaluated in combination with four state-of-the-art CNN architectures: VGG-16, VGG-19, ResNet-50, and MobileNetV2. This study positions radar-generated maps as a form of visual data, bridging radar signal processing and image representation domains while ensuring privacy in sensitive applications. In total, twelve CNN and preprocessing configurations are analyzed, focusing on the trade-offs between preprocessing complexity and recognition accuracy, all of which are essential for real-time applications. Among these results, MobileNetV2, combined with STFT preprocessing, showed an ideal balance, achieving high computational efficiency and an accuracy rate of 96.30%, with a spectrogram generation time of 220 ms and an inference time of 2.57 ms per sample. The comprehensive evaluation underscores the importance of interpretable visual features for resource-constrained environments, expanding the applicability of radar-based HAR systems to domains such as augmented reality, autonomous systems, and edge computing.

摘要

利用雷达技术进行人类活动识别(HAR)在智能安全系统、医疗监测和交互式计算等领域的应用中变得越来越有价值。本研究探讨了卷积神经网络(CNN)与传统雷达信号处理方法的集成,以提高HAR的准确性和效率。结合四种先进的CNN架构:VGG-16、VGG-19、ResNet-50和MobileNetV2,对三种不同的二维雷达处理技术进行了评估,具体为基于距离快速傅里叶变换(FFT)的时间-距离图、基于时间-多普勒的短时傅里叶变换(STFT)图和平滑伪维格纳-威利分布(SPWVD)图。本研究将雷达生成的图定位为一种视觉数据形式,在连接雷达信号处理和图像表示领域的同时,确保敏感应用中的隐私。总共分析了12种CNN和预处理配置,重点关注预处理复杂度和识别准确率之间的权衡,所有这些对于实时应用都是至关重要的。在这些结果中,MobileNetV2与STFT预处理相结合,表现出理想的平衡,实现了高计算效率和96.30%的准确率,频谱图生成时间为220毫秒,每个样本的推理时间为2.57毫秒。综合评估强调了可解释视觉特征在资源受限环境中的重要性,将基于雷达的HAR系统的适用性扩展到增强现实、自主系统和边缘计算等领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/981e/11820602/438679b4e51a/sensors-25-00724-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验