Rezaei Mojtaba, Naji-Tabasi Sara, Ghorani Behrouz, Emadzadeh Bahareh
Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
Curr Res Food Sci. 2025 Jan 21;10:100985. doi: 10.1016/j.crfs.2025.100985. eCollection 2025.
This research presents a novel bi-gel system formed by combining zein microfiber -reinforced carrageenan hydrogels and beeswax oleogels. The main objective is investigating the impact of the interplay between zein microfibers, ι-carrageenan hydrogels, beeswax oleogels on the properties of bi-gels. The study focused on bi-gel formulations combining beeswax oleogel and carrageenan, both plain and with zein microfibers. Different ratios of oleogel to ɩ-carrageenan hydrogel and oleogel to reinforced ɩ-carrageenan hydrogel were established: 5:95, 10:90, 15:85. The designed bi-gels exhibited semi-solid gel properties in rheological analysis, with increased oleogel content enhancing firmness, storage modulus, and loss modulus ( < p < 0.05). The incorporation of oleogel in the bi-gel substantially increased its consistency from 131 (g.s) to 668 (g.s) in the bi-gel containing 0.5% zein microfiber, 10% oleogel, and 90% hydrogel. FTIR results suggested that the bi-gels were formed through physical interactions without covalent cross-linking. Microfibers had a positive effect on the textural characteristics of bi-gels. The hardness of bi-gels increased from 13.26 to 35.12 g to 31-93-64.14 g after addition of microfibers. The BGZ10 formulation, consisting of 10% oleogel and 90% zein-reinforced hydrogel, showed the highest consistency among samples, with measurements of 668.48 ± 3.53 (g.s) and a value of 291000 ± 91.27 (Pa) (P < 0.05). Additionally, the BGZ10 formulation displayed the highest complex viscosity, measuring at 47300 ± 20.73 (P < 0.05). The thermal stability of bigel considerably increased by cooperation fibers in hydrogel. The developed bi-gels demonstrate significant potential for substituting conventional solid fats and introducing distinctive visual characteristics in various food products.
本研究提出了一种由玉米醇溶蛋白微纤维增强的角叉菜胶水凝胶和蜂蜡油凝胶组合而成的新型双凝胶体系。主要目的是研究玉米醇溶蛋白微纤维、ι-角叉菜胶水凝胶、蜂蜡油凝胶之间的相互作用对双凝胶性能的影响。该研究聚焦于将蜂蜡油凝胶与角叉菜胶(有无玉米醇溶蛋白微纤维)组合的双凝胶配方。确定了油凝胶与ι-角叉菜胶水凝胶以及油凝胶与增强ι-角叉菜胶水凝胶的不同比例:5:95、10:90、15:85。在流变学分析中,所设计的双凝胶表现出半固体凝胶特性,随着油凝胶含量的增加,硬度、储能模量和损耗模量增加(<p<0.05)。在含有0.5%玉米醇溶蛋白微纤维、10%油凝胶和90%水凝胶的双凝胶中,油凝胶的加入使其稠度从131(g.s)大幅提高到668(g.s)。傅里叶变换红外光谱(FTIR)结果表明,双凝胶通过物理相互作用形成,无共价交联。微纤维对双凝胶的质地特性有积极影响。添加微纤维后,双凝胶的硬度从13.26克增加到35.12克,再到31 - 93 - 64.14克。由10%油凝胶和90%玉米醇溶蛋白增强水凝胶组成的BGZ10配方在样品中显示出最高的稠度,测量值为668.48±3.53(g.s), 值为291000±91.27(Pa)(P<0.05)。此外,BGZ10配方显示出最高的复数粘度,测量值为47300±20.73(P<0.05)。水凝胶中的协同纤维大大提高了双凝胶的热稳定性。所开发的双凝胶在替代传统固体脂肪以及为各种食品引入独特视觉特性方面显示出巨大潜力。