Chen Kevin H, Yang Junhua, Liu Bian, Jiang Chaohua, Koylass Nicholas, Zhang Zhe, Sun Shuying, Huganir Richard, Qiu Zhaozhu
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
Cell Rep. 2025 Feb 25;44(2):115302. doi: 10.1016/j.celrep.2025.115302. Epub 2025 Feb 12.
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity, thought to be the molecular basis of learning and memory, dependent on dynamic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking. Alteration of endosomal pH negatively affects synaptic transmission and neural development, but it is unclear how pH is involved in AMPAR trafficking. We show that the proton-activated chloride (PAC) channel localizes to early and recycling endosomes in neurons and prevents endosome hyper-acidification. Loss of PAC reduces AMPAR endocytosis during chemical LTD in primary neurons, while basal trafficking and LTP are unaffected. Pyramidal neuron-specific PAC knockout mice have impaired hippocampal LTD, but not LTP, and perform poorly in the Morris water maze reversal test, exhibiting impaired behavioral adaptation. We conclude that proper maintenance of endosomal pH by PAC in neurons is important during LTD to regulate AMPAR trafficking in a manner critical for animal physiology and behavior.
海马体长期增强(LTP)和长期抑制(LTD)是突触可塑性的形式,被认为是学习和记忆的分子基础,依赖于动态的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)转运。内体pH值的改变会对突触传递和神经发育产生负面影响,但尚不清楚pH值如何参与AMPAR转运。我们发现质子激活氯离子(PAC)通道定位于神经元中的早期内体和循环内体,并防止内体过度酸化。PAC缺失会减少原代神经元化学性LTD期间的AMPAR内吞作用,而基础转运和LTP不受影响。锥体神经元特异性PAC基因敲除小鼠的海马体LTD受损,但LTP未受影响,并且在莫里斯水迷宫反转试验中表现不佳,行为适应性受损。我们得出结论,在LTD期间,神经元中PAC对内体pH值的适当维持对于以对动物生理和行为至关重要的方式调节AMPAR转运很重要。