Suppr超能文献

探索性因素分析中应保留多少个因素?因素保留方法的批判性综述。

How many factors to retain in exploratory factor analysis? A critical overview of factor retention methods.

作者信息

Goretzko David

机构信息

Department of Methodology and Statistics, Utrecht University.

出版信息

Psychol Methods. 2025 Feb 13. doi: 10.1037/met0000733.

Abstract

Determining the number of factors is a decisive, yet very difficult decision a researcher faces when conducting an exploratory factor analysis (EFA). Over the last decades, numerous so-called factor retention criteria have been developed to infer the latent dimensionality from empirical data. While some tutorials and review articles on EFA exist which give recommendations on how to determine the number of latent factors, there is no comprehensive overview that categorizes the existing approaches and integrates the results of existing simulation studies evaluating the various methods in different data conditions. With this article, we want to provide such an overview enabling (applied) researchers to make an informed decision when choosing a factor retention criterion. Summarizing the most important results from recent simulation studies, we provide guidance when to rely on which method and call for a more thoughtful handling of overly simple heuristics. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

摘要

在进行探索性因素分析(EFA)时,确定因素的数量是研究人员面临的一个决定性但又非常困难的决策。在过去几十年里,已经开发出了许多所谓的因素保留标准,以便从实证数据中推断潜在维度。虽然存在一些关于EFA的教程和综述文章,给出了关于如何确定潜在因素数量的建议,但没有一个全面的概述来对现有方法进行分类,并整合现有模拟研究在不同数据条件下评估各种方法的结果。通过本文,我们希望提供这样一个概述,使(应用)研究人员在选择因素保留标准时能够做出明智的决策。我们总结了近期模拟研究的最重要结果,提供了何时依赖哪种方法的指导,并呼吁对过于简单的启发式方法进行更深入的思考。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验