Nájera Pablo, Abad Francisco J, Sorrel Miguel A
Department of Social Psychology and Methodology, Universidad Autonoma de Madrid.
Psychol Methods. 2025 Feb;30(1):16-39. doi: 10.1037/met0000579. Epub 2023 May 25.
The number of available factor analytic techniques has been increasing in the last decades. However, the lack of clear guidelines and exhaustive comparison studies between the techniques might hinder that these valuable methodological advances make their way to applied research. The present paper evaluates the performance of confirmatory factor analysis (CFA), CFA with sequential model modification using modification indices and the Saris procedure, exploratory factor analysis (EFA) with different rotation procedures (Geomin, target, and objectively refined target matrix), Bayesian structural equation modeling (BSEM), and a new set of procedures that, after fitting an unrestrictive model (i.e., EFA, BSEM), identify and retain only the relevant loadings to provide a parsimonious CFA solution (ECFA, BCFA). By means of an exhaustive Monte Carlo simulation study and a real data illustration, it is shown that CFA and BSEM are overly stiff and, consequently, do not appropriately recover the structure of slightly misspecified models. EFA usually provides the most accurate parameter estimates, although the rotation procedure choice is of major importance, especially depending on whether the latent factors are correlated or not. Finally, ECFA might be a sound option whenever an a priori structure cannot be hypothesized and the latent factors are correlated. Moreover, it is shown that the pattern of the results of a factor analytic technique can be somehow predicted based on its positioning in the confirmatory-exploratory continuum. Applied recommendations are given for the selection of the most appropriate technique under different representative scenarios by means of a detailed flowchart. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
在过去几十年中,可用的因子分析技术数量一直在增加。然而,缺乏明确的指导方针以及这些技术之间详尽的比较研究,可能会阻碍这些有价值的方法学进展应用于实际研究。本文评估了验证性因子分析(CFA)、使用修正指数和萨里斯程序进行序列模型修正的CFA、采用不同旋转程序(地质统计学、目标和客观精炼目标矩阵)的探索性因子分析(EFA)、贝叶斯结构方程建模(BSEM),以及一组新的程序,即在拟合一个无限制模型(即EFA、BSEM)后,识别并仅保留相关载荷以提供一个简约的CFA解决方案(ECFA、BCFA)。通过详尽的蒙特卡罗模拟研究和实际数据示例表明,CFA和BSEM过于僵化,因此不能适当地恢复略有错误设定的模型结构。EFA通常能提供最准确的参数估计,不过旋转程序的选择至关重要,尤其取决于潜在因子是否相关。最后,每当无法预先假设结构且潜在因子相关时,ECFA可能是一个合理的选择。此外,研究表明,因子分析技术的结果模式在某种程度上可以根据其在验证性 - 探索性连续体中的定位来预测。通过详细的流程图,针对不同代表性场景下最合适技术的选择给出了应用建议。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)