Suppr超能文献

爱丁堡产后抑郁量表(EPDS)的计算机自适应测试策略。

Computer adaptive testing strategies for the Edinburgh Postnatal Depression Scale (EPDS).

作者信息

Wong Emily F, Accortt Eynav E, Choi Seung W, Bright Tiffani J

机构信息

Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Arch Womens Ment Health. 2025 Feb 14. doi: 10.1007/s00737-025-01562-5.

Abstract

PURPOSE

Perinatal mood and anxiety disorders (PMADs) include depressive and anxiety disorders during pregnancy or postpartum and can have significant consequences for the parent, child, and family. When severe, these conditions can lead to suicide. Despite numerous policy efforts to improve screening, education, and referral structures, disparities in PMAD diagnosis and treatment still exists, particularly among racial and ethnic minorities. Computer Adaptive Testing (CAT) has been shown to improve the efficiency of screening by significantly reducing test length. This study evaluates whether applying CAT to the Edinburgh Postnatal Depression Scale (EPDS) maintains diagnostic accuracy while ensuring these methods do not exacerbate racial disparities in PMAD screening outcomes.

METHODS

Using real data simulation, we assessed three CAT-based short-form versions of the EPDS, derived from one-, two-, and three-factor item response theory models. We evaluated their diagnostic precision and examined potential racial disparities in false negative rates compared to the full-length EPDS.

RESULTS

We demonstrate that estimated scores from three short versions of the EPDS administered through CAT-assuming one, two, and three-factor item response theory models-are more highly correlated with the full-length EPDS measure traditionally used to make clinical decisions (r's between 0.96 and 0.97) than the major depressive disorder subtest (CAT-MDD) from CAT-Mental Health (CAT-MH) (r =.82), as previously reported. Importantly, the false negative rates of the CAT-implied diagnoses did not significantly vary between racial groups, indicating no evidence of racial bias in diagnostic accuracy.

CONCLUSION

The CAT-based versions of the EPDS offers a promising solution for improving the efficiency of PMAD screening without sacrificing diagnostic precision or exacerbating racial groups. By reducing evaluation time, these tools could facilitate more widespread and equitable screening, enabling earlier diagnosis and treatment of PMADs across diverse populations.

摘要

目的

围产期情绪和焦虑障碍(PMADs)包括孕期或产后的抑郁和焦虑障碍,会对父母、子女及家庭产生重大影响。病情严重时,这些状况可能导致自杀。尽管为改善筛查、教育及转诊结构做出了诸多政策努力,但PMAD诊断和治疗方面的差异依然存在,尤其是在少数种族和族裔群体中。计算机自适应测试(CAT)已被证明可通过大幅缩短测试长度来提高筛查效率。本研究评估将CAT应用于爱丁堡产后抑郁量表(EPDS)在确保这些方法不会加剧PMAD筛查结果中的种族差异的同时,是否能保持诊断准确性。

方法

我们使用真实数据模拟,评估了源自单因素、双因素和三因素项目反应理论模型的三种基于CAT的EPDS简版。我们评估了它们的诊断精度,并与完整长度的EPDS相比,检查了假阴性率方面潜在的种族差异。

结果

我们证明,通过CAT施测的三种EPDS简版(假设采用单因素、双因素和三因素项目反应理论模型)的估计分数与传统上用于临床决策的完整长度EPDS测量值的相关性(r值在0.96至0.97之间)高于之前报道的CAT心理健康测试(CAT-MH)中的重度抑郁症子测试(CAT-MDD)(r = 0.82)。重要的是,CAT隐含诊断的假阴性率在不同种族群体之间没有显著差异,表明在诊断准确性方面没有种族偏见的证据。

结论

基于CAT的EPDS版本为提高PMAD筛查效率提供了一个有前景的解决方案,同时不牺牲诊断精度或加剧种族差异。通过减少评估时间,这些工具可促进更广泛和公平的筛查,从而能够在不同人群中更早地诊断和治疗PMADs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验