Sirpal Parikshat, Sikora William A, Refai Hazem H
School of Electrical and Computer Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, 73019, USA.
School of Biomedical Engineering, Gallogly College of Engineering, Tulsa, OK, 74135, USA.
Comput Biol Med. 2025 Apr;188:109832. doi: 10.1016/j.compbiomed.2025.109832. Epub 2025 Feb 13.
Traditional scalp EEG signal analysis in pediatric epilepsy is limited by poor spatial resolution, susceptibility to noise and artifacts, and difficulty in accurately localizing epileptic activity, especially from deep or interconnected brain regions. Additionally, such methods often overlook the dynamic nature of brain states and seizure propagation, while reliance on visual inspection introduces variability in interpretation. These limitations hinder precise seizure detection and the mechanistic understanding of brain network dynamics. Here, we offer an alternative approach that addresses these challenges, and eventually enables effective clinical interventions to improve patient outcomes. By incorporating chaos and dynamical systems theory, we present and validate a novel ensemble framework, Chaotic Attractor Transition Ensemble Network for Epilepsy (CATE-NET), which identifies neuro-dynamical signatures underlying pediatric epilepsy, facilitating the discrimination between physiological brain activity and seizure-induced signal irregularities. CATE-NET is modularly designed to leverage nonlinear dynamics of EEG signals and chaotic attractors, particularly the Rössler chaotic attractor to model scalp EEG data. This is followed by a long short-term memory network module for the automatic analysis of brain states. The final module utilizes probabilistic graphing to map the output of the LSTM to state transition graphs, between pre-ictal, inter-ictal, ictal, and ictal-free brain states. Model metrics include a classification accuracy of 0.98, sensitivity of 0.76, specificity of 0.84, and an AUC value of 0.91 when distinguishing among ictal, inter-ictal, and ictal-free brain states. Additionally, the system integrates flexible horizon windows of 10, 20, and 30 min to determine brain state transitions. We demonstrate that nonlinear dynamics present in epileptic brain states derived from the Rössler chaotic attractor are effective features to compute brain state analysis and visualize pediatric epileptic brain state topology. CATE-NET introduces a novel platform for brain state analysis, feature extraction, and topological mapping in pediatric epilepsy by combining chaotic attractors, deep learning, and probabilistic graphing. By integrating explainable AI (XAI), the framework clarifies how chaotic attractor patterns and probabilistic transitions contribute to brain state classifications, seizure state dynamic transitions. This approach reveals the spatial organization and EEG signal dynamics of pediatric epileptic brain states, allowing integration with clinical EEG equipment to potentially improve seizure management and real time decision making.
儿科癫痫中传统的头皮脑电图信号分析存在局限性,包括空间分辨率差、易受噪声和伪影影响,以及难以准确定位癫痫活动,尤其是来自深部或相互连接的脑区的癫痫活动。此外,此类方法往往忽视脑状态和癫痫发作传播的动态性质,而依赖目视检查会导致解释的可变性。这些局限性阻碍了精确的癫痫发作检测以及对脑网络动力学的机制理解。在此,我们提供了一种应对这些挑战的替代方法,并最终实现有效的临床干预以改善患者预后。通过纳入混沌和动力系统理论,我们提出并验证了一种新颖的集成框架——癫痫混沌吸引子过渡集成网络(CATE-NET),该框架可识别儿科癫痫背后的神经动力学特征,有助于区分生理性脑活动和癫痫发作引起的信号异常。CATE-NET采用模块化设计,以利用脑电图信号和混沌吸引子的非线性动力学,特别是罗斯勒混沌吸引子来对头皮脑电图数据进行建模。随后是一个长短期记忆网络模块,用于自动分析脑状态。最后一个模块利用概率绘图将长短期记忆网络的输出映射到发作前、发作间期、发作期和无发作脑状态之间的状态转移图。在区分发作期、发作间期和无发作脑状态时,模型指标包括分类准确率0.98、灵敏度0.76、特异性0.84和AUC值0.91。此外,该系统集成了10分钟、20分钟和30分钟的灵活时间窗,以确定脑状态转变。我们证明,源自罗斯勒混沌吸引子的癫痫脑状态中存在的非线性动力学是用于计算脑状态分析和可视化儿科癫痫脑状态拓扑结构的有效特征。CATE-NET通过结合混沌吸引子、深度学习和概率绘图,为儿科癫痫中的脑状态分析、特征提取和拓扑映射引入了一个新颖的平台。通过集成可解释人工智能(XAI),该框架阐明了混沌吸引子模式和概率转变如何有助于脑状态分类以及癫痫发作状态动态转变。这种方法揭示了儿科癫痫脑状态的空间组织和脑电图信号动力学,允许与临床脑电图设备集成,以潜在地改善癫痫发作管理和实时决策。