Dong Cuilan, Liao Zikun, Yin Yanyi, Yi Yinzhi, Zhu Guanghui, Zheng Tuquan, Tan Qian, Xie Yonghong
Nursing Department, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children's Hospital, Hunan, 410007, China.
Department of Spine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
Sci Rep. 2025 Feb 14;15(1):5454. doi: 10.1038/s41598-025-89748-w.
Controlling degradation rate is essential for the biomedical application of biodegradable Zn alloys. Alloying with soluble elements is an effective way to regulate formation of second phases, which differ in potential from the Zn matrix. The potential difference exhibits positive or negative effects on corrosion resistance. This study successfully forms MnZn phase with nano size by altering ECAP temperature. Subsequently, MnZn phase promotes grain refinement, improvement of elongation, and corrosion resistance. Higher elongation in Zn-Mn alloy with MnZn phase is attributed to the grain boundary sliding, deformation twins in MnZn phase. Meanwhile, grain boundary corrosion in Zn-Mn alloy with MnZn phase is incomplete. Corrosion mode of Zn-Mn alloys without MnZn phase is dominated by grain boundary corrosion, accompanied by pitting corrosion. The increased corrosion resistance from MnZn phase stems from its higher potential than Zn matrix. Zn-Mn alloys with and without MnZn phase show a comparable cytocompatibility and osteogenic properties. Our findings provide an effective way to regulating mechanical properties and corrosion resistance of Zn alloys via controlling precipitation.
控制降解速率对于可生物降解锌合金的生物医学应用至关重要。与可溶性元素合金化是调节第二相形成的有效方法,这些第二相的电位与锌基体不同。电位差对耐腐蚀性有正面或负面影响。本研究通过改变等径角挤压温度成功形成了纳米尺寸的MnZn相。随后,MnZn相促进了晶粒细化、伸长率的提高和耐腐蚀性。具有MnZn相的Zn-Mn合金中较高的伸长率归因于晶界滑动、MnZn相中的变形孪晶。同时,具有MnZn相的Zn-Mn合金中的晶界腐蚀是不完全的。没有MnZn相的Zn-Mn合金的腐蚀模式以晶界腐蚀为主,伴有点蚀。MnZn相导致的耐腐蚀性提高源于其比锌基体更高的电位。有和没有MnZn相的Zn-Mn合金表现出相当的细胞相容性和成骨特性。我们的研究结果提供了一种通过控制析出物来调节锌合金力学性能和耐腐蚀性的有效方法。