CERTARA UK Limited, Simcyp Division, Sheffield, UK.
CPT Pharmacometrics Syst Pharmacol. 2022 Jun;11(6):755-765. doi: 10.1002/psp4.12787. Epub 2022 Apr 22.
Physiologically-based pharmacokinetic (PBPK) models usually include a large number of parameters whose values are obtained using in vitro to in vivo extrapolation. However, such extrapolations can be uncertain and may benefit from inclusion of evidence from clinical observations via parametric inference. When clinical interindividual variability is high, or the data sparse, it is essential to use a population pharmacokinetics inferential framework to estimate unknown or uncertain parameters. Several approaches are available for that purpose, but their relative advantages for PBPK modeling are unclear. We compare the results obtained using a minimal PBPK model of a canonical theophylline dataset with quasi-random parametric expectation maximization (QRPEM), nonparametric adaptive grid estimation (NPAG), Bayesian Metropolis-Hastings (MH), and Hamiltonian Markov Chain Monte Carlo sampling. QRPEM and NPAG gave consistent population and individual parameter estimates, mostly agreeing with Bayesian estimates. MH simulations ran faster than the others methods, which together had similar performance.
生理药代动力学(PBPK)模型通常包含大量参数,这些参数的值是通过体外到体内外推获得的。然而,这种外推可能存在不确定性,并且可以通过参数推断纳入临床观察证据来获益。当个体间变异性高或数据稀疏时,使用群体药代动力学推断框架来估计未知或不确定的参数至关重要。为此目的有几种方法,但它们在 PBPK 建模方面的相对优势尚不清楚。我们比较了使用最小 PBPK 模型对典型茶碱数据集进行模拟的结果,以及准随机参数期望最大化(QRPEM)、非参数自适应网格估计(NPAG)、贝叶斯马尔可夫链蒙特卡罗采样(MH)。QRPEM 和 NPAG 给出了一致的群体和个体参数估计值,与贝叶斯估计值大多一致。MH 模拟比其他方法运行得更快,而其他方法的性能相似。