Suppr超能文献

探索重演。

Exploring replay.

作者信息

Antonov Georgy, Dayan Peter

机构信息

Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.

出版信息

Nat Commun. 2025 Feb 15;16(1):1657. doi: 10.1038/s41467-025-56731-y.

Abstract

Animals face uncertainty about their environments due to initial ignorance or subsequent changes. They therefore need to explore. However, the algorithmic structure of exploratory choices in the brain still remains largely elusive. Artificial agents face the same problem, and a venerable idea in reinforcement learning is that they can plan appropriate exploratory choices offline, during the equivalent of quiet wakefulness or sleep. Although offline processing in humans and other animals, in the form of hippocampal replay and preplay, has recently been the subject of highly informative modelling, existing methods only apply to known environments. Thus, they cannot predict exploratory replay choices during learning and/or behaviour in the face of uncertainty. Here, we extend an influential theory of hippocampal replay and examine its potential role in approximately optimal exploration, deriving testable predictions for the patterns of exploratory replay choices in a paradigmatic spatial navigation task. Our modelling provides a normative interpretation of the available experimental data suggestive of exploratory replay. Furthermore, we highlight the importance of sequence replay, and license a range of new experimental paradigms that should further our understanding of offline processing.

摘要

由于初始的未知或后续的变化,动物面临着关于其环境的不确定性。因此,它们需要进行探索。然而,大脑中探索性选择的算法结构在很大程度上仍然难以捉摸。人工智能体也面临同样的问题,强化学习中的一个古老观点是,它们可以在相当于安静的清醒或睡眠期间离线规划适当的探索性选择。尽管人类和其他动物的离线处理,以海马体重放和预演的形式,最近一直是高信息量建模的主题,但现有方法仅适用于已知环境。因此,它们无法预测在面对不确定性时学习和/或行为期间的探索性重放选择。在这里,我们扩展了一种有影响力的海马体重放理论,并研究其在近似最优探索中的潜在作用,得出了在一个典型的空间导航任务中探索性重放选择模式的可测试预测。我们的建模为提示探索性重放的现有实验数据提供了规范性解释。此外,我们强调了序列重放的重要性,并批准了一系列新的实验范式,这应该会增进我们对离线处理的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/263b/11829958/f20ee749004c/41467_2025_56731_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验