Wang Dexin, Tao Jiali, Lei Jin, Qin Xinyan, Wang Yanqi, Song Jie, Feng Tianming, Zeng Yujie
College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832003, China.
Sci Rep. 2025 Feb 15;15(1):5668. doi: 10.1038/s41598-025-85689-6.
To address the challenges posed by varying heat generation modules in Ground Control Stations (GCS) during various work modes, a cooling system has been developed. This research introduces an Adaptive Variable Channel Control (AVCC) cooling approach using the Deep Reinforcement Learning Soft Actor-Critic (SAC) algorithm. The primary contributions of this paper include: (1) the design of a distributed cooling module featuring multiple cooling fans, which enables a variable channel cooling structure; (2) the development of a multi-module temperature control platform that simulates the heat generation conditions of each module under six work modes, providing a training environment for the cooling control algorithm; (3) the formulation of a model-free control method based on the SAC algorithm, AVCC, to optimize the cooling efficiency and endurance of the GCS. Finally, the effectiveness of the AVCC method was evaluated under maximum load conditions, contrasting it with a rule-based policy. The experimental results indicate that the AVCC method is able to cool the modules B (voltage stabilizer), Q (battery), E (charger), G (data transmission), D (voltage stabilizer), C (picture transmission), H (computer), and F (voltage stabilizer) from 78.9 °C, 58.5 °C, 88.3 °C, 88.3 °C, 79.2 °C, 88.9 °C, 77.5 °C, and 78.8 °C, respectively, to 50 °C in 280 s, improving the cooling efficiency by 40.4% and decreasing the energy consumption by 42.2% compared to the rule-based approach. The proposed distributed cooling module and AVCC method improve cooling efficiency and reduce energy consumption in the GCS. This study provides a valuable reference for the control and design of cooling systems in electronic equipment cabinets, especially those with similar shapes, sizes, cooling methods, number of heat sources and environmental conditions.
为应对地面控制站(GCS)在各种工作模式下不同发热模块带来的挑战,开发了一种冷却系统。本研究引入了一种采用深度强化学习软演员评论家(SAC)算法的自适应可变通道控制(AVCC)冷却方法。本文的主要贡献包括:(1)设计了一种具有多个冷却风扇的分布式冷却模块,实现了可变通道冷却结构;(2)开发了一个多模块温度控制平台,该平台模拟六个工作模式下每个模块的发热情况,为冷却控制算法提供训练环境;(3)制定了基于SAC算法的无模型控制方法AVCC,以优化GCS的冷却效率和续航能力。最后,在最大负载条件下评估了AVCC方法的有效性,并将其与基于规则的策略进行对比。实验结果表明,AVCC方法能够在280秒内将模块B(稳压器)、Q(电池)、E(充电器)、G(数据传输)、D(稳压器)、C(图像传输)、H(计算机)和F(稳压器)的温度分别从78.9℃、58.5℃、88.3℃、88.3℃、79.2℃、88.9℃、77.5℃和78.8℃降至50℃,与基于规则的方法相比,冷却效率提高了40.4%,能耗降低了42.2%。所提出的分布式冷却模块和AVCC方法提高了GCS的冷却效率并降低了能耗。本研究为电子设备机柜冷却系统的控制和设计提供了有价值的参考,特别是对于形状、尺寸、冷却方式、热源数量和环境条件相似的机柜。