Suppr超能文献

整合机器学习与人类使用经验以确定中医个性化药物治疗:以难治性高血压为例

Integrating machine learning and human use experience to identify personalized pharmacotherapy in Traditional Chinese Medicine: a case study on resistant hypertension.

作者信息

Qianzi Che, Dasheng Liu, Xinghua Xiang, Yaxin Tian, Feibiao Xie, Wenyuan X U, Jian Liu, Xuejie Wang, Liying Wang, Weiguo Bai, Xuejie Han, Wei Yang

机构信息

Department of Medical Statistics, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.

Department of Science and Education, Medical Statistics Teaching and Research Office, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.

出版信息

J Tradit Chin Med. 2025 Feb;45(1):192-200. doi: 10.19852/j.cnki.jtcm.2025.01.019.

Abstract

OBJECTIVE

To enhance the understanding of identifying personalized pharmacotherapy options in Traditional Chinese Medicine (TCM), and further support the registration of new TCM drugs.

METHODS

Generalized Boosted Models and XGBoost were employed to construct a classification model to identify the bad prognosis factors in resistant hypertension (RH) patients. Furthermore, we used association analysis to explore the rules of "symptom-syndrome" and "symptom-herb" for the major influencing factors, in order to summarize prescription pattern and applicable patients of TCM.

RESULTS

Patients with major adverse cardiac events mostly have complex symptoms of phlegm, stasis, deficiency and fire intermingled with each other, and finally summarized the human experience of using Chinese herbal medicine to precisely intervene in some symptoms of RH patients on the basis of conventional Western medical treatment.

CONCLUSIONS

Machine learning algorithms can make full use of human use experience and evidence to save clinical trial resources and accelerate the development of TCM varieties.

摘要

目的

增强对中医个体化药物治疗方案识别的理解,并进一步支持中药新药注册。

方法

采用广义增强模型和XGBoost构建分类模型,以识别顽固性高血压(RH)患者的不良预后因素。此外,我们使用关联分析来探索主要影响因素的“症状-证候”和“症状-药物”规律,以总结中医的处方模式和适用患者。

结果

发生主要不良心脏事件的患者大多具有痰、瘀、虚、火相互夹杂的复杂症状,并最终总结出在西医常规治疗基础上,使用中药精准干预RH患者某些症状的临床经验。

结论

机器学习算法可以充分利用人类用药经验和证据,节省临床试验资源,加速中药品种的研发。

相似文献

3
[Analysis of prescription rules for hyperlipidemia comorbid with hypertension based on latent structure model and association rules].
Zhongguo Zhong Yao Za Zhi. 2024 Sep;49(18):5045-5054. doi: 10.19540/j.cnki.cjcmm.20240604.501.
7
[Medication rules of Chinese herbs in treatment of H-type hypertension based on data mining].
Zhongguo Zhong Yao Za Zhi. 2024 May;49(9):2522-2531. doi: 10.19540/j.cnki.cjcmm.20240117.501.
8
Prescription pattern of Chinese herbal products for hypertension in Taiwan: a population-based study.
J Ethnopharmacol. 2014 Sep 29;155(3):1534-40. doi: 10.1016/j.jep.2014.07.047. Epub 2014 Aug 1.
9
[Review and prospect of traditional Chinese medicine in treatment of hypertension].
Zhongguo Zhong Yao Za Zhi. 2023 Dec;48(24):6592-6599. doi: 10.19540/j.cnki.cjcmm.20230904.501.
10
Application of Traditional Chinese Medicines as Personalized Therapy in Human Cancers.
Am J Chin Med. 2018;46(5):953-970. doi: 10.1142/S0192415X18500507. Epub 2018 Jul 9.

本文引用的文献

1
Banxia baizhu tianma decoction, a Chinese herbal formula, for hypertension: Integrating meta-analysis and network pharmacology.
Front Pharmacol. 2022 Dec 2;13:1025104. doi: 10.3389/fphar.2022.1025104. eCollection 2022.
2
Citri Reticulatae Pericarpium (Chenpi): A multi-efficacy pericarp in treating cardiovascular diseases.
Biomed Pharmacother. 2022 Oct;154:113626. doi: 10.1016/j.biopha.2022.113626. Epub 2022 Sep 1.
5
Traditional Chinese medicine enhances myocardial metabolism during heart failure.
Biomed Pharmacother. 2022 Feb;146:112538. doi: 10.1016/j.biopha.2021.112538. Epub 2021 Dec 15.
6
Use of Real-World Evidence to Drive Drug Development Strategy and Inform Clinical Trial Design.
Clin Pharmacol Ther. 2022 Jan;111(1):77-89. doi: 10.1002/cpt.2480. Epub 2021 Nov 28.
7
The Real-World Data Challenges Radar: A Review on the Challenges and Risks regarding the Use of Real-World Data.
Digit Biomark. 2021 Jun 24;5(2):148-157. doi: 10.1159/000516178. eCollection 2021 May-Aug.
8
Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms.
Biomed Pharmacother. 2021 Oct;142:111979. doi: 10.1016/j.biopha.2021.111979. Epub 2021 Aug 4.
10
Phytochemistry and Pharmacological Activities of  (F.A. Wolf) Ryvarden & Gilb.
Front Pharmacol. 2020 Sep 15;11:505249. doi: 10.3389/fphar.2020.505249. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验