Zou Wei, Ji Yongxin, Guan Jiaojiao, Sun Yanni
Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf075.
Plasmids play an essential role in horizontal gene transfer, aiding their host bacteria in acquiring beneficial traits like antibiotic and metal resistance. There exist some plasmids that can transfer, replicate, or persist in multiple organisms. Identifying the relatively complete host range of these plasmids provides insights into how plasmids promote bacterial evolution. To achieve this, we can apply multi-label learning models for plasmid host range prediction. However, there are no databases providing the detailed and complete host labels of these broad-host-range plasmids. Without adequate well-annotated training samples, learning models can fail to extract discriminative feature representations for plasmid host prediction.
To address this problem, we propose a self-correction multi-label learning model called MOSTPLAS. We design a pseudo label learning algorithm and a self-correction asymmetric loss to facilitate the training of multi-label learning model with samples containing some unknown missing labels. We conducted a series of experiments on the NCBI RefSeq plasmid database, the PLSDB 2025 database, plasmids with experimentally determined host labels, the Hi-C dataset, and the DoriC dataset. The benchmark results against other plasmid host range prediction tools demonstrated that MOSTPLAS recognized more host labels while keeping a high precision.
MOSTPLAS is implemented with Python, which can be downloaded at https://github.com/wzou96/MOSTPLAS. All relevant data we used in the experiments can be found at https://zenodo.org/doi/10.5281/zenodo.14708999.
质粒在水平基因转移中起着至关重要的作用,帮助其宿主细菌获得诸如抗生素抗性和金属抗性等有益特性。存在一些能够在多种生物体中转移、复制或持续存在的质粒。确定这些质粒相对完整的宿主范围有助于深入了解质粒如何促进细菌进化。为实现这一目标,我们可以应用多标签学习模型来预测质粒宿主范围。然而,目前尚无数据库提供这些广宿主范围质粒的详细且完整的宿主标签。没有足够的经过良好注释的训练样本,学习模型可能无法提取用于质粒宿主预测的判别性特征表示。
为解决这一问题,我们提出了一种名为MOSTPLAS的自校正多标签学习模型。我们设计了一种伪标签学习算法和一种自校正非对称损失,以促进使用包含一些未知缺失标签的样本对多标签学习模型进行训练。我们在NCBI RefSeq质粒数据库、PLSDB 2025数据库、具有实验确定宿主标签的质粒、Hi-C数据集和DoriC数据集上进行了一系列实验。与其他质粒宿主范围预测工具的基准测试结果表明,MOSTPLAS在保持高精度的同时识别出了更多的宿主标签。
MOSTPLAS是用Python实现的,可以从https://github.com/wzou96/MOSTPLAS下载。我们在实验中使用的所有相关数据可在https://zenodo.org/doi/10.5281/zenodo.14708999找到。