Antimicrobial Resistance Unit (ARU), Facultad de Veterinaria and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain.
Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Unité de Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.
mBio. 2023 Jun 27;14(3):e0315822. doi: 10.1128/mbio.03158-22. Epub 2023 Apr 25.
Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in , we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication () of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS and IS, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS leads to expansion, IS cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene , conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family , for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded . Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.
质粒促进了细菌中抗菌药物耐药基因的垂直和水平传播。质粒对新宿主的宿主范围和适应性决定了它们对抗菌药物耐药性传播的影响。在这项工作中,我们探索了实验进化中驱动质粒适应新宿主的机制。我们使用通常在 中发现的小复制子质粒 pB1000,研究了它在不同细菌家族的宿主大肠杆菌中的适应性。我们观察到两种不同的适应机制。一种机制是质粒复制起始点 () 中的单核苷酸多态性 (SNP),这增加了大肠杆菌细胞中的质粒拷贝数,提高了稳定性和耐药性谱。第二种机制由两个插入序列 (IS) 组成,IS 和 IS,它们通过破坏对大肠杆菌有害的 pB1000 上未表征的基因来降低质粒的适应性代价。这两种机制都独立地增加了 pB1000 的稳定性,但只有它们的组合才能长期维持。至关重要的是,我们表明这些机制对质粒的宿主范围有不同的影响。 中的 SNP 阻止了在原始宿主中的复制,导致宿主范围发生转变。相比之下,IS 的引入要么改变要么扩展了宿主范围,这取决于 IS。虽然 IS 导致了扩展,但 IS 不能被重新引入到原始宿主中。这项研究为理解 IS 在质粒-宿主适应中的相关性提供了新的见解,以了解其在耐药性传播中的成功。ColE1 样质粒是可以在至少四个分类阶元中找到的小型可移动质粒,与抗菌药物耐药基因强烈相关。质粒 pB1000 携带基因 ,赋予对青霉素和头孢克洛的高水平耐药性。pB1000 已在 家族的各种物种中被描述,例如,在可引起中耳炎、脑膜炎和肺炎等疾病的流感嗜血杆菌中。为了理解通过水平转移传播的耐药性,研究质粒适应新宿主的机制至关重要。在这项工作中,我们确定了 pB1000 中的一个基因,该基因编码一种对大肠杆菌有毒的肽,以及 pB1000 在大肠杆菌细胞中的低质粒拷贝数 (PCN) 是所描述的质粒-宿主适应的关键靶点,因此限制了 pB1000 编码的 的传播。此外,我们展示了两种适应机制的相互作用如何导致质粒在不同的细菌家族中成功维持。