Zhang Zhengsheng, Wang Mengxue, Lu Tong, Shi Yachen, Xie Chunming, Ren Qingguo, Wang Zan
Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
Department of Radiology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
Brain Commun. 2025 Feb 17;7(1):fcaf033. doi: 10.1093/braincomms/fcaf033. eCollection 2025.
The amnestic mild cognitive impairment progression to probable Alzheimer's disease is a continuous phenomenon. Here we conduct a cohort study and apply machine learning to generate a model of predicting episodic memory development for individual amnestic mild cognitive impairment patient that incorporates whole-brain functional connectivity. Fifty amnestic mild cognitive impairment patients completed baseline and 3-year follow-up visits including episodic memory assessments (e.g. Rey Auditory Verbal Learning Test Delayed Recall) and resting-state functional MRI scanning. Using a multivariate analytical method known as relevance vector regression, we found that the baseline whole-brain functional connectivity features failed to predict the baseline Rey Auditory Verbal Learning Test Delayed Recall scores ( = 0.17, = 0.082). Nonetheless, the baseline whole-brain functional connectivity pattern could predict the longitudinal Rey Auditory Verbal Learning Test Delayed Recall score with statistically significant accuracy ( = 0.50, < 0.001). The connectivity that contributed most to the prediction (i.e. the top 1% connectivity) included within-default mode connections, within-limbic connections and the connections between default mode and limbic systems. More importantly, these connections with the highest absolute contribution weight mainly displayed long anatomical distances (i.e. Euclidean distance >75 mm). These 'neural fingerprints' may be appropriate biomarkers for amnestic mild cognitive impairment patients to optimize individual patient management and longitudinal evaluation in a timely fashion.
遗忘型轻度认知障碍进展为可能的阿尔茨海默病是一个连续的现象。在此,我们进行了一项队列研究,并应用机器学习来生成一个预测个体遗忘型轻度认知障碍患者情景记忆发展的模型,该模型纳入了全脑功能连接。50名遗忘型轻度认知障碍患者完成了基线和3年随访,包括情景记忆评估(如雷伊听觉词语学习测验延迟回忆)和静息态功能磁共振成像扫描。使用一种称为相关向量回归的多变量分析方法,我们发现基线全脑功能连接特征无法预测基线雷伊听觉词语学习测验延迟回忆分数(=0.17,=0.082)。尽管如此,基线全脑功能连接模式能够以具有统计学意义的准确性预测纵向雷伊听觉词语学习测验延迟回忆分数(=0.50,<0.001)。对预测贡献最大的连接(即前1%的连接)包括默认模式内连接、边缘系统内连接以及默认模式和边缘系统之间的连接。更重要的是,这些具有最高绝对贡献权重的连接主要显示出较长的解剖距离(即欧几里得距离>75毫米)。这些“神经指纹”可能是遗忘型轻度认知障碍患者优化个体患者管理和及时进行纵向评估的合适生物标志物。