Suppr超能文献

人工智能在过去 12 年中对阿尔茨海默病脑 MRI 分析的应用:系统综述。

Artificial intelligence in brain MRI analysis of Alzheimer's disease over the past 12 years: A systematic review.

机构信息

Clinical Research and Evaluation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada; Department of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.

Clinical Research and Evaluation, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.

出版信息

Ageing Res Rev. 2022 May;77:101614. doi: 10.1016/j.arr.2022.101614. Epub 2022 Mar 28.

Abstract

INTRODUCTION

Multiple structural brain changes in Alzheimer's disease (AD) and mild cognitive impairment (MCI) have been revealed on magnetic resonance imaging (MRI). There is a fast-growing effort in applying artificial intelligence (AI) to analyze these data. Here, we review and evaluate the AI studies in brain MRI analysis with synthesis.

METHODS

A systematic review of the literature, spanning the years from 2009 to 2020, was completed using the PubMed database. AI studies using MRI imaging to investigate normal aging, mild cognitive impairment, and AD-dementia were retrieved for review. Bias assessment was completed using the PROBAST criteria.

RESULTS

97 relevant studies were included in the review. The studies were typically focused on the classification of AD, MCI, and normal aging (71% of the reported studies) and the prediction of MCI conversion to AD (25%). The best performance was achieved by using the deep learning-based convolution neural network algorithms (weighted average accuracy 89%), in contrast to 76-86% using Logistic Regression, Support Vector Machines, and other AI methods.

DISCUSSION

The synthesized evidence is paramount to developing sophisticated AI approaches to reliably capture and quantify multiple subtle MRI changes in the whole brain that exemplify the complexity and heterogeneity of AD and brain aging.

摘要

简介

磁共振成像(MRI)显示阿尔茨海默病(AD)和轻度认知障碍(MCI)存在多种结构脑变化。应用人工智能(AI)分析这些数据的研究正在迅速发展。在这里,我们对脑 MRI 分析中应用 AI 的研究进行了综述和评估。

方法

使用 PubMed 数据库,对 2009 年至 2020 年的文献进行了系统性回顾。检索了使用 MRI 成像研究正常衰老、轻度认知障碍和 AD 痴呆的 AI 研究进行综述。使用 PROBAST 标准进行偏倚评估。

结果

共纳入 97 项相关研究。这些研究通常集中于 AD、MCI 和正常衰老的分类(占报告研究的 71%)以及 MCI 向 AD 转化的预测(25%)。基于深度学习卷积神经网络算法的表现最佳(加权平均准确率为 89%),而逻辑回归、支持向量机和其他 AI 方法的准确率为 76%-86%。

讨论

综合证据对于开发复杂的 AI 方法至关重要,可以可靠地捕捉和量化整个大脑中的多种细微 MRI 变化,这些变化体现了 AD 和大脑衰老的复杂性和异质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验