Suppr超能文献

静息态 fMRI 检测阿尔茨海默病和轻度认知障碍网络连接的诊断效能:系统综述。

Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer's disease and mild cognitive impairment: A systematic review.

机构信息

Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

Department of Physiology, Faculty of Basic Medical Sciences, Bauchi State University Gadau, Gadau, Nigeria.

出版信息

Hum Brain Mapp. 2021 Jun 15;42(9):2941-2968. doi: 10.1002/hbm.25369. Epub 2021 May 4.

Abstract

Resting-state fMRI (rs-fMRI) detects functional connectivity (FC) abnormalities that occur in the brains of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). FC of the default mode network (DMN) is commonly impaired in AD and MCI. We conducted a systematic review aimed at determining the diagnostic power of rs-fMRI to identify FC abnormalities in the DMN of patients with AD or MCI compared with healthy controls (HCs) using machine learning (ML) methods. Multimodal support vector machine (SVM) algorithm was the commonest form of ML method utilized. Multiple kernel approach can be utilized to aid in the classification by incorporating various discriminating features, such as FC graphs based on "nodes" and "edges" together with structural MRI-based regional cortical thickness and gray matter volume. Other multimodal features include neuropsychiatric testing scores, DTI features, and regional cerebral blood flow. Among AD patients, the posterior cingulate cortex (PCC)/Precuneus was noted to be a highly affected hub of the DMN that demonstrated overall reduced FC. Whereas reduced DMN FC between the PCC and anterior cingulate cortex (ACC) was observed in MCI patients. Evidence indicates that the nodes of the DMN can offer moderate to high diagnostic power to distinguish AD and MCI patients. Nevertheless, various concerns over the homogeneity of data based on patient selection, scanner effects, and the variable usage of classifiers and algorithms pose a challenge for ML-based image interpretation of rs-fMRI datasets to become a mainstream option for diagnosing AD and predicting the conversion of HC/MCI to AD.

摘要

静息态功能磁共振成像(rs-fMRI)可检测出阿尔茨海默病(AD)和轻度认知障碍(MCI)患者大脑中出现的功能连接(FC)异常。AD 和 MCI 患者的默认模式网络(DMN)FC 通常受损。我们进行了一项系统评价,旨在确定 rs-fMRI 使用机器学习(ML)方法识别 AD 或 MCI 患者与健康对照(HC)之间 DMN 的 FC 异常的诊断能力。多模态支持向量机(SVM)算法是最常用的 ML 方法形式。多内核方法可以通过合并各种有区别的特征(例如基于“节点”和“边缘”的 FC 图以及基于结构 MRI 的区域皮质厚度和灰质体积)来辅助分类。其他多模态特征包括神经心理学测试评分、DTI 特征和区域脑血流。在 AD 患者中,后扣带回皮层(PCC)/楔前叶被认为是 DMN 的一个高度受影响的中心,其整体 FC 降低。而在 MCI 患者中则观察到 PCC 和前扣带皮层(ACC)之间的 DMN FC 降低。有证据表明,DMN 的节点可以提供中等至高的诊断能力,以区分 AD 和 MCI 患者。然而,基于患者选择、扫描仪效应以及分类器和算法的不同使用,数据的同质性存在各种问题,这对基于 ML 的 rs-fMRI 数据集的图像解释构成了挑战,使其无法成为 AD 诊断和预测 HC/MCI 向 AD 转化的主流选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f238/8127155/821641af447e/HBM-42-2941-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验