Suppr超能文献

用于预测慢性肾脏病患者抑郁风险的列线图的开发:对2007 - 2014年美国国家健康与营养检查调查数据的分析

Development of a nomogram for predicting depression risk in patients with chronic kidney disease: an analysis of data from the US National Health and Nutrition Examination Survey, 2007-2014.

作者信息

Lai Ru Le, Cheng Jia Yin, Zhang Tianhao, Liang Xiao, Zhu Yuan Yue, Huang Xu, Wu Bin

机构信息

Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China.

Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.

出版信息

BMJ Open. 2025 Feb 18;15(2):e089956. doi: 10.1136/bmjopen-2024-089956.

Abstract

OBJECTIVES

Depression frequently occurs among individuals suffering from chronic kidney disease (CKD), diminishing life quality considerably while accelerating the disease course. This study aims to create a predictive model to identify patients with CKD at high risk for depression.

DESIGN

Analysis of cross-sectional data.

SETTING

US National Health and Nutrition Examination Survey (2007-2014).

PARTICIPANTS

A total of 2303 patients with CKD (weighted=17 422 083) with complete data were included in the analysis.

OUTCOME MEASURES

We used the least absolute shrinkage and selection operator regression for variable selection and constructed a weighted logistic regression model through stepwise backward elimination based on minimisation of the Akaike information criterion, visualised with a nomogram. Internal validation was conducted using 1000 bootstrap resamples. Model discrimination was assessed using receiver operating characteristic curves, calibration was evaluated using the Hosmer-Lemeshow test and calibration curves, and net benefits and clinical impact were analysed using decision curve analysis and comparative impact chart curves.

RESULTS

The final model included 10 predictors: age, gender, poverty income ratio, body mass index, smoking, sleep time, sleep disorder, chest pain, diabetes and arthritis. The model achieved an area under the curve of 0.776 (95% CI 0.745 to 0.806) with good fit (Hosmer-Lemeshow p=0.805). Interventions within the 0.1-0.6 probability range showed significant benefits.

CONCLUSION

We have crafted a predictive model with good discriminative power that could potentially help clinicians identify patients with CKD at high risk for depression, thereby facilitating early intervention and improving the prognosis of these patients.

摘要

目的

抑郁症在慢性肾脏病(CKD)患者中经常出现,在显著降低生活质量的同时加速疾病进程。本研究旨在创建一个预测模型,以识别有抑郁症高风险的CKD患者。

设计

横断面数据分析。

地点

美国国家健康与营养检查调查(2007 - 2014年)。

参与者

共有2303例具有完整数据的CKD患者(加权后=17422083)纳入分析。

结局指标

我们使用最小绝对收缩和选择算子回归进行变量选择,并基于赤池信息准则最小化通过逐步向后消除构建加权逻辑回归模型,用列线图进行可视化。使用1000次自抽样重复进行内部验证。使用受试者工作特征曲线评估模型辨别力,使用Hosmer-Lemeshow检验和校准曲线评估校准,并使用决策曲线分析和比较影响图曲线分析净效益和临床影响。

结果

最终模型包括10个预测因素:年龄、性别、贫困收入比、体重指数、吸烟、睡眠时间、睡眠障碍、胸痛、糖尿病和关节炎。该模型的曲线下面积为0.776(95%CI 0.745至0.806),拟合良好(Hosmer-Lemeshow p = 0.805)。在0.1 - 0.6概率范围内的干预显示出显著益处。

结论

我们构建了一个具有良好辨别力的预测模型,可能有助于临床医生识别有抑郁症高风险的CKD患者,从而促进早期干预并改善这些患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6214/11836871/ddad1f272cfe/bmjopen-15-2-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验