Wang Ziyang, Lee Yujian, Xu Yongqi, Gao Peng, Yu Chuckel, Chen Jiaxing
Dept/Center, Guangdong Medical University, Dongguan, China.
Guangdong Provincial Key Laboratory IRADS, BNU-HKBU UIC, Zhuhai, China.
Bio Protoc. 2025 Feb 5;15(3):e5205. doi: 10.21769/BioProtoc.5205.
Cellular communication relies on the intricate interplay of signaling molecules, which come together to form the cell-cell interaction (CCI) network that orchestrates tissue behavior. Researchers have shown that shallow neural networks can effectively reconstruct the CCI from the abundant molecular data captured in spatial transcriptomics (ST). However, in scenarios characterized by sparse connections and excessive noise within the CCI, shallow networks are often susceptible to inaccuracies, leading to suboptimal reconstruction outcomes. To achieve a more comprehensive and precise CCI reconstruction, we propose a novel method called triple-enhancement-based graph neural network (TENET). The TENET framework has been implemented and evaluated on both real and synthetic ST datasets. This protocol primarily introduces our network architecture and its implementation. Key features • Cell-cell reconstruction network using ST data. • To facilitate the implementation of a more holistic CCI, we incorporate diverse CCI modalities into consideration. • To further enrich the input information, the downstream gene regulatory network (GRN) is also incorporated as an input to the network. • The network architecture considers global and local cellular and genetic features rather than solely leveraging the graph neural network (GNN) to model such information.
细胞通讯依赖于信号分子的复杂相互作用,这些信号分子共同构成了协调组织行为的细胞-细胞相互作用(CCI)网络。研究人员已经表明,浅层神经网络可以从空间转录组学(ST)中捕获的大量分子数据有效地重建CCI。然而,在CCI中以稀疏连接和过多噪声为特征的情况下,浅层网络往往容易出现不准确的情况,导致重建结果不理想。为了实现更全面、精确的CCI重建,我们提出了一种名为基于三重增强的图神经网络(TENET)的新方法。TENET框架已在真实和合成的ST数据集上实现并进行了评估。本方案主要介绍我们的网络架构及其实现。关键特性 • 使用ST数据的细胞-细胞重建网络。 • 为了便于实现更全面的CCI,我们考虑了多种CCI模式。 • 为了进一步丰富输入信息,下游基因调控网络(GRN)也作为网络的输入。 • 网络架构考虑了全局和局部细胞及遗传特征,而不是仅仅利用图神经网络(GNN)对这类信息进行建模。