Wang Bo, Long Yahui, Bai Yuting, Luo Jiawei, Keong Kwoh Chee
College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, China.
Bioinformatics Institute (BII), Agency for Science, Technology and Research(A*STAR), 138671, Singapore.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae670.
Spatial transcriptomics (ST) technologies have revolutionized our ability to map gene expression patterns within native tissue context, providing unprecedented insights into tissue architecture and cellular heterogeneity. However, accurately deconvolving cell-type compositions from ST spots remains challenging due to the sparse and averaged nature of ST data, which is essential for accurately depicting tissue architecture. While numerous computational methods have been developed for cell-type deconvolution and spatial distribution reconstruction, most fail to capture tissue complexity at the single-cell level, thereby limiting their applicability in practical scenarios.
To this end, we propose a novel cycle-consistent generative adversarial network named STCGAN for cellular deconvolution in spatial transcriptomic. STCGAN first employs a cycle-consistent generative adversarial network (CGAN) to pre-train on ST data, ensuring that both the mapping from ST data to latent space and its reverse mapping are consistent, capturing complex spatial gene expression patterns and learning robust latent representations. Based on the learned representation, STCGAN then optimizes a trainable cell-to-spot mapping matrix to integrate scRNA-seq data with ST data, accurately estimating cellular composition within each capture spot and effectively reconstructing the spatial distribution of cells across the tissue. To further enhance deconvolution accuracy, we incorporate spatial-aware regularization that ensures accurate cellular distribution reconstruction within the spatial context. Benchmarking against seven state-of-the-art methods on five simulated and real datasets from various tissues, STCGAN consistently delivers superior cell-type deconvolution performance.
The code of STCGAN can be downloaded from https://github.com/cs-wangbo/STCGAN and all the mentioned datasets are available on Zenodo at https://zenodo.org/doi/10.5281/zenodo.10799113.
空间转录组学(ST)技术彻底改变了我们在天然组织环境中绘制基因表达模式的能力,为组织结构和细胞异质性提供了前所未有的见解。然而,由于ST数据的稀疏性和平均性质,从ST斑点中准确反卷积细胞类型组成仍然具有挑战性,而这对于准确描绘组织结构至关重要。虽然已经开发了许多用于细胞类型反卷积和空间分布重建的计算方法,但大多数方法未能在单细胞水平上捕捉组织复杂性,从而限制了它们在实际场景中的适用性。
为此,我们提出了一种名为STCGAN的新型循环一致生成对抗网络,用于空间转录组学中的细胞反卷积。STCGAN首先使用循环一致生成对抗网络(CGAN)对ST数据进行预训练,确保从ST数据到潜在空间的映射及其反向映射都是一致的,捕捉复杂的空间基因表达模式并学习鲁棒的潜在表示。基于学到的表示,STCGAN然后优化一个可训练的细胞到斑点映射矩阵,以将scRNA-seq数据与ST数据整合,准确估计每个捕获斑点内的细胞组成,并有效重建组织中细胞的空间分布。为了进一步提高反卷积精度,我们引入了空间感知正则化,以确保在空间背景下准确重建细胞分布。在来自各种组织的五个模拟和真实数据集上与七种最先进的方法进行基准测试,STCGAN始终提供卓越的细胞类型反卷积性能。
STCGAN的代码可以从https://github.com/cs-wangbo/STCGAN下载,所有提到的数据集可在Zenodo上获取,网址为https://zenodo.org/doi/10.5281/zenodo.10799113。