Ferrandi Erika, Pesole Graziano, Chiara Matteo
Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari 70126, Italy.
Department of Biosciences, University of Milan, Milan 20133, Italy.
Bioinform Adv. 2025 Feb 7;5(1):vbaf015. doi: 10.1093/bioadv/vbaf015. eCollection 2025.
The COVID-19 pandemic highlighted the importance of genomic surveillance for monitoring pathogens evolution, mitigating the spread of infectious disorders, and informing decision-making by public health authorities. Since the need for the summarization and interpretation of large bodies of data, computational methods are critical for the implementation of effective genomic surveillance strategies.
Here, we introduce mapPat, an R Shiny application for the interactive visualization of pathogens genomic data in space and time. mapPat is designed as a user-friendly dashboard and allows the dynamic monitoring of the evolution of variants, lineages, and mutations in the genome of a pathogen at glance through informative geographic maps and elegant data visuals. mapPat provides a fine-grained map of pathogens evolution and circulation and represents a useful addition to the catalogue of bioinformatics methods for the genomic surveillance of pathogens.
mapPat is available at GitHub (https://github.com/F3rika/mapPat.git).
新冠疫情凸显了基因组监测对于监测病原体进化、减轻传染病传播以及为公共卫生当局的决策提供信息的重要性。由于需要对大量数据进行汇总和解读,计算方法对于实施有效的基因组监测策略至关重要。
在此,我们介绍mapPat,这是一个用于在空间和时间上交互式可视化病原体基因组数据的R Shiny应用程序。mapPat被设计为一个用户友好的仪表板,通过信息丰富的地理地图和精美的数据可视化,能够让用户一眼动态监测病原体基因组中变异、谱系和突变的进化情况。mapPat提供了病原体进化和传播的细粒度地图,是病原体基因组监测生物信息学方法目录中的一个有用补充。
mapPat可在GitHub上获取(https://github.com/F3rika/mapPat.git)。