Suppr超能文献

基于重要深度学习模型的脑肿瘤精确多分类比较分析。

Comparative analysis for accurate multi-classification of brain tumor based on significant deep learning models.

作者信息

Elhadidy Mohamed S, Elgohr Abdelrahman T, El-Geneedy Marwa, Akram Shimaa, Kasem Hossam M

机构信息

Department of Mechatronics Engineering, Faculty of Engineering, Horus University, New Damietta, 34517, Egypt.

Communications and Electronics Engineering Dept., Faculty of Engineering, Horus University Egypt, New Damietta, Egypt.

出版信息

Comput Biol Med. 2025 Apr;188:109872. doi: 10.1016/j.compbiomed.2025.109872. Epub 2025 Feb 18.

Abstract

Brain tumours are a significant health concern, often resulting in severe cognitive and physiological impairments. Accurate detection and classification of brain tumours, including glioma, meningioma, and pituitary tumours, are crucial for effective treatment. In this study, we present a comprehensive approach for brain tumor classification using MRI scans and deep learning models, specifically focusing on the use of Convolutional Neural Networks (CNN), Swin Transformer, and EfficientNet. MRI scans from four categories, including healthy brains, underwent pre-processing using normalisation, resizing, and data augmentation to mitigate problems associated with variability in image quality and tumor manifestation. Every deep learning model was trained on the pre-processed dataset, and their performance was assessed using accuracy, sensitivity, and specificity measures. The findings demonstrate that the Swin Transformer and EfficientNet models achieved superior classification testing accuracy, which are 98.08 % and 98.72 % respectively, surpassing conventional CNNs, which achieve 95.16 % testing accuracy. EfficientNet exhibited an optimal combination between computational economy and classification performance, making it an exemplary choice for resource-limited settings. Our results underscore the capability of sophisticated deep learning architectures to enhance diagnostic precision in brain tumor classification tasks.

摘要

脑肿瘤是一个重大的健康问题,常常导致严重的认知和生理障碍。准确检测和分类脑肿瘤,包括胶质瘤、脑膜瘤和垂体瘤,对于有效治疗至关重要。在本研究中,我们提出了一种使用磁共振成像(MRI)扫描和深度学习模型进行脑肿瘤分类的综合方法,特别关注卷积神经网络(CNN)、Swin Transformer和EfficientNet的使用。来自包括健康大脑在内的四类的MRI扫描图像,经过归一化、调整大小和数据增强等预处理,以减轻与图像质量和肿瘤表现的变异性相关的问题。每个深度学习模型都在预处理后的数据集上进行训练,并使用准确率、灵敏度和特异性指标评估其性能。研究结果表明,Swin Transformer和EfficientNet模型分别实现了98.08%和98.72%的卓越分类测试准确率,超过了传统CNN的95.16%的测试准确率。EfficientNet在计算经济性和分类性能之间展现了最佳组合,使其成为资源受限环境的典范选择。我们的结果强调了先进的深度学习架构在提高脑肿瘤分类任务诊断精度方面的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验