Suppr超能文献

FHIR 细粒度敏感数据分割

FHIR Granular Sensitive Data Segmentation.

作者信息

Lee Preston, Mendoza Daniel, Kaiser Martha, Lott Eric, Singh Gagandeep, Grando Adela

机构信息

Arizona State University, College of Health Solutions, Phoenix, Arizona, United States.

Skycapp, Phoenix, Arizona, United States.

出版信息

Appl Clin Inform. 2025 Jan;16(1):156-166. doi: 10.1055/a-2466-4371. Epub 2025 Feb 19.

Abstract

BACKGROUND

Due to fear of stigma, patients want more control over the sharing of sensitive medical records. The Substance Abuse and Mental Health Administration (SAMHSA) and the Office of the National Coordinator (ONC) supported the development of standards-compliant, consent-respecting medical record exchange technology using metadata labeling (e.g., substance use information). Existing technologies must be updated with newer standards and support more than binary-sensitive categorizations to better align with how physicians categorize sensitive medical records.

OBJECTIVES

Our goal was to deploy, pilot test, and share open-source Fast Healthcare Interoperability Resources (FHIR)-based data segmentation technologies. We pilot-tested the technologies using real-world patient electronic health record data in the context of substance use information. We involved physicians in designing a novel decision engine that supports various confidence levels.

RESULTS

We deployed a web-based Patient Portal and Clinical Decision Support (CDS) granular data segmentation Engine to allow patients to make consent-based granular data choices (e.g., not sharing substance use medical records). Compared with previous solutions, the Engine innovates by using the latest Health Level 7 (HL7) standards to support data sensitivity labeling and redaction: FHIR R5 and its Consent resource type and CDS Hooks. It also supports configurable floating point confidence threshold cutoffs as opposed to binary medical record categorizations. Multiple engineering choices were made to simplify software development and maintenance and to improve technology adaptability, reusability, and scalability.

CONCLUSION

The resulting data segmentation technologies update SAMHSA and ONC software with the newest HL7 standards and better mimic how physicians categorize sensitive medical information with various confidence levels. To support reusability, we shared the resulting open-source code through the HL7 FHIR Foundry.

摘要

背景

由于担心污名化,患者希望对敏感医疗记录的共享有更多控制权。药物滥用和心理健康服务管理局(SAMHSA)和国家协调员办公室(ONC)支持开发符合标准、尊重同意的医疗记录交换技术,使用元数据标签(例如药物使用信息)。现有技术必须更新以符合更新的标准,并支持不止二元敏感分类,以便更好地与医生对敏感医疗记录的分类方式保持一致。

目的

我们的目标是部署、试点测试并分享基于开源快速医疗保健互操作性资源(FHIR)的数据分割技术。我们在药物使用信息的背景下,使用真实世界患者电子健康记录数据对这些技术进行了试点测试。我们让医生参与设计一个支持各种置信水平的新型决策引擎。

结果

我们部署了一个基于网络的患者门户和临床决策支持(CDS)粒度数据分割引擎,以允许患者基于同意做出粒度数据选择(例如不共享药物使用医疗记录)。与以前的解决方案相比,该引擎的创新之处在于使用最新的健康级别7(HL7)标准来支持数据敏感性标签和编辑:FHIR R5及其同意资源类型和CDS挂钩。它还支持可配置的浮点置信阈值截断,而不是二元医疗记录分类。我们做出了多个工程选择,以简化软件开发和维护,并提高技术的适应性、可重用性和可扩展性。

结论

由此产生的数据分割技术用最新的HL7标准更新了SAMHSA和ONC软件,并更好地模拟了医生如何对具有各种置信水平的敏感医疗信息进行分类。为了支持可重用性,我们通过HL7 FHIR铸造厂分享了由此产生的开源代码。

相似文献

1
FHIR Granular Sensitive Data Segmentation.FHIR 细粒度敏感数据分割
Appl Clin Inform. 2025 Jan;16(1):156-166. doi: 10.1055/a-2466-4371. Epub 2025 Feb 19.
7
Shared decision-making for people with asthma.哮喘患者的共同决策
Cochrane Database Syst Rev. 2017 Oct 3;10(10):CD012330. doi: 10.1002/14651858.CD012330.pub2.

本文引用的文献

2
Measuring the willingness to share personal health information: a systematic review.测量个人健康信息共享意愿:系统评价。
Front Public Health. 2023 Jul 20;11:1213615. doi: 10.3389/fpubh.2023.1213615. eCollection 2023.
8
Pilot evaluation of sensitive data segmentation technology for privacy.用于隐私保护的敏感数据分割技术的试点评估。
Int J Med Inform. 2020 Jun;138:104121. doi: 10.1016/j.ijmedinf.2020.104121. Epub 2020 Mar 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验