Suppr超能文献

2型糖尿病慢性肾病发病风险(ROCK-DM):一个四变量预测模型的开发与验证

Risk of onset of chronic kidney disease in type 2 diabetes mellitus (ROCK-DM): Development and validation of a 4-variable prediction model.

作者信息

Fong Jie Ming Nigel, Low Serena, Xu Yang, Teo Pek Siang Edmund, Lim Gek Hsiang, Zheng Huili, Ang Keven, Tan Ngiap Chuan, Poh Cheng Boon, Tay Hui Boon, Liu Allen Yan Lun, Chan Choong Meng, Tan Chieh Suai, Lim Su Chi, Bee Yong Mong, Kwek Jia Liang

机构信息

Department of Renal Medicine, Singapore General Hospital, Singapore; Department of Renal Medicine, Sengkang General Hospital, Singapore.

Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore.

出版信息

Prim Care Diabetes. 2025 Jun;19(3):312-321. doi: 10.1016/j.pcd.2025.02.005. Epub 2025 Feb 18.

Abstract

AIMS

The aim of this study was to develop and validate a prediction model for incident chronic kidney disease (CKD) in type 2 diabetes mellitus (T2DM), defined as eGFR < 60 ml/min/1.73m2 and/or urine albumin:creatinine ratio (UACR) > 3 mg/mmol in ≥ 2 consecutive readings ≥ 3 months apart.

METHODS

Model derivation was performed in the SingHealth Diabetes Registry, including patients aged ≥ 21 years diagnosed with T2DM without pre-existing CKD. External validation was performed in a single-center prospective observational cohort. Cox Proportional Hazard model was created to evaluate predictors associated with time-to-onset of incident CKD. Increasingly parsimonious models were assessed for discrimination and calibration. Models underwent external validation, benchmarking against existing models, and decision curve analysis.

RESULTS

25,142 (59 %) of 42,552 patients in the derivation cohort developed CKD over a median 4.0 years (IQR 2.1-7.7) follow up. An 18-variable model, 12-variable model, and 4-variable model (including age, duration of T2DM, eGFR, and previous non-persistent albuminuria) was developed. The 4-variable model had a C-statistic of 0.78 and good calibration on plots of observed-versus-predicted risk. The 12-variable and 18-variable models performed similarly. In the external validation cohort of 2249 patients, of whom 1035 (46 %) developed incident CKD, the 4-variable model had a C-statistic of 0.87. All models had better discrimination than existing benchmarks. Decision curve analysis of the 4-variable model showed positive net benefit for any threshold probability above 16 % for 2-year and 28 % for 5-year CKD risk.

CONCLUSION

The 4-variable model for prediction of incident CKD in T2DM demonstrates good performance, predicts both eGFR and albuminuria endpoints, and is simple-to-use. This may guide personalized care, resource allocation and population health.

摘要

目的

本研究旨在开发并验证一种用于预测2型糖尿病(T2DM)患者发生慢性肾脏病(CKD)的模型,CKD定义为估算肾小球滤过率(eGFR)<60 ml/min/1.73m²和/或尿白蛋白与肌酐比值(UACR)>3 mg/mmol,且在间隔≥3个月的连续≥2次读数中出现上述情况。

方法

在新加坡健康集团糖尿病登记处进行模型推导,纳入年龄≥21岁、诊断为T2DM且无既往CKD病史的患者。在一个单中心前瞻性观察队列中进行外部验证。创建Cox比例风险模型以评估与CKD发病时间相关的预测因素。对越来越简约的模型进行区分度和校准评估。各模型进行外部验证、与现有模型进行基准比较以及决策曲线分析。

结果

在推导队列的42,552例患者中,25,142例(59%)在中位4.0年(四分位间距2.1 - 7.7年)的随访中发生了CKD。开发了一个包含18个变量的模型、一个包含12个变量的模型和一个包含4个变量的模型(包括年龄、T2DM病程、eGFR和既往非持续性白蛋白尿)。4变量模型的C统计量为0.78,在观察风险与预测风险图上校准良好。12变量模型和18变量模型表现相似。在2249例患者的外部验证队列中,其中1035例(46%)发生了新发CKD,4变量模型的C统计量为0.87。所有模型的区分度均优于现有基准。4变量模型的决策曲线分析显示,对于2年CKD风险,任何阈值概率高于16%时净效益为正;对于5年CKD风险,阈值概率高于28%时净效益为正。

结论

用于预测T2DM患者发生CKD的4变量模型表现良好,可预测eGFR和白蛋白尿终点,且易于使用。这可能为个性化医疗、资源分配和人群健康提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验