Belhadi Asma, Djenouri Youcef, Belbachir Ahmed Nabil
OsloMet University, Oslo, Norway.
Department of MicroSystems, University of South-Eastern Norway, Kongsberg, Norway.
Sci Rep. 2025 Feb 19;15(1):6124. doi: 10.1038/s41598-025-90572-5.
This research presents a novel ensemble fuzzy deep learning approach for brain Magnetic Resonance Imaging (MRI) analysis, aiming to improve the segmentation of brain tissues and abnormalities. The method integrates multiple components, including diverse deep learning architectures enhanced with volumetric fuzzy pooling, a model fusion strategy, and an attention mechanism to focus on the most relevant regions of the input data. The process begins by collecting medical data using sensors to acquire MRI images. These data are then used to train several deep learning models that are specifically designed to handle various aspects of brain MRI segmentation. To enhance the model's performance, an efficient ensemble learning method is employed to combine the predictions of multiple models, ensuring that the final decision accounts for different strengths of each individual model. A key feature of the approach is the construction of a knowledge base that stores data from training images and associates it with the most suitable model for each specific sample. During the inference phase, this knowledge base is consulted to quickly identify and select the best model for processing new test images, based on the similarity between the test data and previously encountered samples. The proposed method is rigorously tested on real-world brain MRI segmentation benchmarks, demonstrating superior performance in comparison to existing techniques. Our proposed method achieves an Intersection over Union (IoU) of 95% on the complete Brain MRI Segmentation dataset, demonstrating a 10% improvement over baseline solutions.
本研究提出了一种用于脑磁共振成像(MRI)分析的新型集成模糊深度学习方法,旨在改进脑组织和异常的分割。该方法集成了多个组件,包括通过体积模糊池化增强的多种深度学习架构、一种模型融合策略以及一种关注输入数据最相关区域的注意力机制。该过程首先使用传感器收集医学数据以获取MRI图像。然后,这些数据用于训练几个专门设计用于处理脑MRI分割各个方面的深度学习模型。为了提高模型的性能,采用了一种有效的集成学习方法来组合多个模型的预测,确保最终决策考虑每个单独模型的不同优势。该方法的一个关键特征是构建一个知识库,该知识库存储来自训练图像的数据,并将其与每个特定样本最合适的模型相关联。在推理阶段,根据测试数据与先前遇到的样本之间的相似性,参考该知识库以快速识别并选择用于处理新测试图像的最佳模型。所提出的方法在真实世界的脑MRI分割基准上进行了严格测试,与现有技术相比表现出卓越的性能。我们提出的方法在完整的脑MRI分割数据集上实现了95%的交并比(IoU),比基线解决方案提高了10%。