Suppr超能文献

GPT 与 PubMed 相遇:一种使用大语言模型众包偏头痛药物评价进行文献综述的新方法。

GPT meets PubMed: a novel approach to literature review using a large language model to crowdsource migraine medication reviews.

作者信息

Mackenzie Elyse, Cheng Roger, Zhang Pengfei

机构信息

Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Jersey, USA.

Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

出版信息

BMC Neurol. 2025 Feb 19;25(1):69. doi: 10.1186/s12883-025-04071-1.

Abstract

OBJECTIVE

To evaluate the potential of two large language models (LLMs), GPT-4 (OpenAI) and PaLM2 (Google), in automating migraine literature analysis by conducting sentiment analysis of migraine medications in clinical trial abstracts.

BACKGROUND

Migraine affects over one billion individuals worldwide, significantly impacting their quality of life. A vast amount of scientific literature on novel migraine therapeutics continues to emerge, but an efficient method by which to perform ongoing analysis and integration of this information poses a challenge.

METHODS

"Sentiment analysis" is a data science technique used to ascertain whether a text has positive, negative, or neutral emotional tone. Migraine medication names were extracted from lists of licensed biological products from the FDA, and relevant abstracts were identified using the MeSH term "migraine disorders" on PubMed and filtered for clinical trials. Standardized prompts were provided to the APIs of both GPT-4 and PaLM2 to request an article sentiment as to the efficacy of each medication found in the abstract text. The resulting sentiment outputs were classified using both a binary and a distribution-based model to determine the efficacy of a given medication.

RESULTS

In both the binary and distribution-based models, the most favorable migraine medications identified by GPT-4 and PaLM2 aligned with evidence-based guidelines for migraine treatment.

CONCLUSIONS

LLMs have potential as complementary tools in migraine literature analysis. Despite some inconsistencies in output and methodological limitations, the results highlight the utility of LLMs in enhancing the efficiency of literature review through sentiment analysis.

摘要

目的

通过对临床试验摘要中的偏头痛药物进行情感分析,评估两种大语言模型(LLMs),即GPT-4(OpenAI)和PaLM2(谷歌)在自动化偏头痛文献分析方面的潜力。

背景

偏头痛影响着全球超过10亿人,对他们的生活质量有重大影响。关于新型偏头痛治疗方法的大量科学文献不断涌现,但对这些信息进行持续分析和整合的有效方法面临挑战。

方法

“情感分析”是一种数据科学技术,用于确定文本具有积极、消极还是中性的情感基调。从美国食品药品监督管理局(FDA)的许可生物制品列表中提取偏头痛药物名称,并使用PubMed上的医学主题词(MeSH)“偏头痛障碍”识别相关摘要,并筛选出临床试验。向GPT-4和PaLM2的应用程序编程接口(APIs)提供标准化提示,以请求对摘要文本中发现的每种药物的疗效给出文章情感倾向。使用二元模型和基于分布的模型对所得的情感输出进行分类,以确定给定药物的疗效。

结果

在二元模型和基于分布的模型中,GPT-4和PaLM2识别出的最有利的偏头痛药物与偏头痛治疗的循证指南一致。

结论

大语言模型有潜力作为偏头痛文献分析的辅助工具。尽管在输出上存在一些不一致以及方法上的局限性,但结果突出了大语言模型在通过情感分析提高文献综述效率方面的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c0/11837380/d3aa73aa0b94/12883_2025_4071_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验