文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

情感提示会放大人工智能大语言模型中的虚假信息生成。

Emotional prompting amplifies disinformation generation in AI large language models.

作者信息

Vinay Rasita, Spitale Giovanni, Biller-Andorno Nikola, Germani Federico

机构信息

Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland.

School of Medicine, University of St. Gallen, St. Gallen, Switzerland.

出版信息

Front Artif Intell. 2025 Apr 7;8:1543603. doi: 10.3389/frai.2025.1543603. eCollection 2025.


DOI:10.3389/frai.2025.1543603
PMID:40260413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12009909/
Abstract

INTRODUCTION: The emergence of artificial intelligence (AI) large language models (LLMs), which can produce text that closely resembles human-written content, presents both opportunities and risks. While these developments offer significant opportunities for improving communication, such as in health-related crisis communication, they also pose substantial risks by facilitating the creation of convincing fake news and disinformation. The widespread dissemination of AI-generated disinformation adds complexity to the existing challenges of the ongoing infodemic, significantly affecting public health and the stability of democratic institutions. RATIONALE: Prompt engineering is a technique that involves the creation of specific queries given to LLMs. It has emerged as a strategy to guide LLMs in generating the desired outputs. Recent research shows that the output of LLMs depends on emotional framing within prompts, suggesting that incorporating emotional cues into prompts could influence their response behavior. In this study, we investigated how the politeness or impoliteness of prompts affects the frequency of disinformation generation by various LLMs. RESULTS: We generated and evaluated a corpus of 19,800 social media posts on public health topics to assess the disinformation generation capabilities of OpenAI's LLMs, including davinci-002, davinci-003, gpt-3.5-turbo, and gpt-4. Our findings revealed that all LLMs efficiently generated disinformation (davinci-002, 67%; davinci-003, 86%; gpt-3.5-turbo, 77%; and gpt-4, 99%). Introducing polite language to prompt requests yielded significantly higher success rates for disinformation (davinci-002, 79%; davinci-003, 90%; gpt-3.5-turbo, 94%; and gpt-4, 100%). Impolite prompting resulted in a significant decrease in disinformation production across all models (davinci-002, 59%; davinci-003, 44%; and gpt-3.5-turbo, 28%) and a slight reduction for gpt-4 (94%). CONCLUSION: Our study reveals that all tested LLMs effectively generate disinformation. Notably, emotional prompting had a significant impact on disinformation production rates, with models showing higher success rates when prompted with polite language compared to neutral or impolite requests. Our investigation highlights that LLMs can be exploited to create disinformation and emphasizes the critical need for ethics-by-design approaches in developing AI technologies. We maintain that identifying ways to mitigate the exploitation of LLMs through emotional prompting is crucial to prevent their misuse for purposes detrimental to public health and society.

摘要

引言:人工智能(AI)大语言模型(LLM)的出现,其生成的文本与人类撰写的内容极为相似,这既带来了机遇,也带来了风险。虽然这些进展为改善沟通提供了重大机遇,比如在与健康相关的危机沟通中,但它们也通过助长令人信服的假新闻和虚假信息的产生带来了巨大风险。人工智能生成的虚假信息的广泛传播给当前信息疫情的现有挑战增添了复杂性,严重影响公众健康和民主机构的稳定性。 原理:提示工程是一种涉及为大语言模型创建特定查询的技术。它已成为引导大语言模型生成所需输出的一种策略。最近的研究表明,大语言模型的输出取决于提示中的情感框架,这表明将情感线索纳入提示可能会影响其响应行为。在本研究中,我们调查了提示的礼貌或不礼貌如何影响各种大语言模型生成虚假信息的频率。 结果:我们生成并评估了一个包含19800条关于公共卫生主题的社交媒体帖子的语料库,以评估OpenAI的大语言模型生成虚假信息的能力,包括davinci - 002、davinci - 003、gpt - 3.5 - turbo和gpt - 4。我们的研究结果显示,所有大语言模型都能高效生成虚假信息(davinci - 002为67%;davinci - 003为86%;gpt - 3.5 - turbo为77%;gpt - 4为99%)。在提示请求中引入礼貌语言会使虚假信息的成功率显著提高(davinci - 002为79%;davinci - 003为90%;gpt - 3.5 - turbo为94%;gpt - 4为100%)。不礼貌的提示导致所有模型生成虚假信息的情况显著减少(davinci - 002为59%;davinci - 003为44%;gpt - 3.5 - turbo为28%),gpt - 4略有下降(94%)。 结论:我们的研究表明,所有测试的大语言模型都能有效生成虚假信息。值得注意的是,情感提示对虚假信息生成率有显著影响,与中性或不礼貌请求相比,使用礼貌语言提示时模型显示出更高的成功率。我们的调查强调,大语言模型可被利用来制造虚假信息,并强调在开发人工智能技术时采用设计即伦理方法的迫切需求。我们认为,确定通过情感提示减轻大语言模型被利用的方法对于防止其被滥用于损害公众健康和社会的目的至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c3c/12009909/89bf063a954e/frai-08-1543603-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c3c/12009909/89bf063a954e/frai-08-1543603-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c3c/12009909/89bf063a954e/frai-08-1543603-g001.jpg

相似文献

[1]
Emotional prompting amplifies disinformation generation in AI large language models.

Front Artif Intell. 2025-4-7

[2]
Use of Large Language Models to Classify Epidemiological Characteristics in Synthetic and Real-World Social Media Posts About Conjunctivitis Outbreaks: Infodemiology Study.

J Med Internet Res. 2025-7-2

[3]
Stench of Errors or the Shine of Potential: The Challenge of (Ir)Responsible Use of ChatGPT in Speech-Language Pathology.

Int J Lang Commun Disord. 2025

[4]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[5]
Assessing the System-Instruction Vulnerabilities of Large Language Models to Malicious Conversion Into Health Disinformation Chatbots.

Ann Intern Med. 2025-6-24

[6]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[7]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[8]
Evaluating Large Language Models for Drafting Emergency Department Discharge Summaries.

medRxiv. 2024-4-4

[9]
The first step is the hardest: pitfalls of representing and tokenizing temporal data for large language models.

J Am Med Inform Assoc. 2024-9-1

[10]
Public Versus Academic Discourse on ChatGPT in Health Care: Mixed Methods Study.

JMIR Infodemiology. 2025-6-23

本文引用的文献

[1]
RETRACTION: Impact of Wound Complications in Obese Versus Non-Obese Patients Undergoing Total Hip Arthroplasty: A Meta-Analysis.

Int Wound J. 2025-4

[2]
CORRIGENDUM: RETRACTION: Brønsted Acid Catalysis-Controlling the Competition between Monomeric Versus Dimeric Reaction Pathways Enhances Stereoselectivities.

Angew Chem Int Ed Engl. 2025-4-11

[3]
Corrigendum to "Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design" [Bioact. Mater. 40C (2024) 1-18].

Bioact Mater. 2024-9-28

[4]
Disruptive Technologies and Open Science: How Open Should Open Science Be? A 'Third Bioethics' Ethical Framework.

Sci Eng Ethics. 2024-8-9

[5]
AI model GPT-3 (dis)informs us better than humans.

Sci Adv. 2023-6-28

[6]
Strengthening scientific credibility against misinformation and disinformation: Where do we stand now?

J Control Release. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索