Suppr超能文献

在使用杂交猪参考群体进行基因组预测中品种组成的影响。

Effect of breed composition in genomic prediction using crossbred pig reference population.

作者信息

Hong Euiseo, Chung Yoonji, Dinh Phuong Thanh N, Kim Yoonsik, Maeng Suyeon, Choi Young Jae, Lee Jaeho, Jeong Woonyoung, Choi Hyunji, Lee Seung Hwan

机构信息

Department of Bio-Big Data and Precision Agriculture, Chungnam National University, Daejeon 34134, Korea.

Institute of Agricultural Science, Chungnam National University, Daejeon 34134, Korea.

出版信息

J Anim Sci Technol. 2025 Jan;67(1):56-68. doi: 10.5187/jast.2025.e2. Epub 2025 Jan 31.

Abstract

In contrast to conventional genomic prediction, which typically targets a single breed and circumvents the necessity for population structure adjustments, multi-breed genomic prediction necessitates accounting for population structure to mitigate potential bias. The presence of this structure in multi-breed datasets can influence prediction accuracy, rendering proper modeling crucial for achieving unbiased results. This study aimed to address the effect of population structure on multi-breed genomic prediction, particularly focusing on crossbred reference populations. The prediction accuracy of genomic models was assessed by incorporating genomic breed composition (GBC) or principal component analysis (PCA) into the genomic best linear unbiased prediction (GBLUP) model. The accuracy of five different genomic prediction models was evaluated using data from 354 Duroc × Korean native pig crossbreds, 1,105 Landrace × Korean native pig crossbreds, and 1,107 Landrace × Yorkshire × Duroc crossbreds. The models tested were GBLUP without population structure adjustment, GBLUP with PCA as a fixed effect, GBLUP with GBC as a fixed effect, GBLUP with PCA as a random effect, and GBLUP with GBC as a random effect. The highest prediction accuracies for backfat thickness (0.59) and carcass weight (0.50) were observed in Models 1, 4, and 5. In contrast, Models 2 and 3, which included population structure as a fixed effect, exhibited lower accuracies, with backfat thickness accuracies of 0.40 and 0.53 and carcass weight accuracies of 0.34 and 0.38, respectively. These findings suggest that in multi-breed genomic prediction, the most efficient and accurate approach is either to forgo adjusting for population structure or, if adjustments are necessary, to model it as a random effect. This study provides a robust framework for multi-breed genomic prediction, highlighting the critical role of appropriately accounting for population structure. Moreover, our findings have important implications for improving genomic selection efficiency, ultimately enhancing commercial production by optimizing prediction accuracy in crossbred populations.

摘要

与传统基因组预测不同,传统基因组预测通常针对单一品种,无需进行群体结构调整,而多品种基因组预测则需要考虑群体结构以减轻潜在偏差。多品种数据集中这种结构的存在会影响预测准确性,因此正确建模对于获得无偏结果至关重要。本研究旨在探讨群体结构对多品种基因组预测的影响,特别关注杂交参考群体。通过将基因组品种组成(GBC)或主成分分析(PCA)纳入基因组最佳线性无偏预测(GBLUP)模型,评估基因组模型的预测准确性。使用来自354头杜洛克×韩国本地猪杂交种、1105头长白×韩国本地猪杂交种和1107头长白×约克夏×杜洛克杂交种的数据,评估了五种不同基因组预测模型的准确性。测试的模型包括未进行群体结构调整的GBLUP、以PCA为固定效应的GBLUP、以GBC为固定效应的GBLUP、以PCA为随机效应的GBLUP和以GBC为随机效应的GBLUP。在模型1、4和5中观察到背膘厚度(0.59)和胴体重量(0.50)的最高预测准确性。相比之下,将群体结构作为固定效应的模型2和3表现出较低的准确性,背膘厚度准确性分别为0.40和0.53,胴体重量准确性分别为0.34和0.38。这些发现表明,在多品种基因组预测中,最有效和准确的方法要么是不进行群体结构调整,要么在必要时将其作为随机效应进行建模。本研究为多品种基因组预测提供了一个强大的框架,突出了适当考虑群体结构的关键作用。此外,我们的发现对提高基因组选择效率具有重要意义,最终通过优化杂交群体的预测准确性来提高商业生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da7/11833194/d706275073b1/jast-67-1-56-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验