Mueller Andreas U, Molina Nina, Darst Seth A
Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA.
bioRxiv. 2025 Feb 8:2025.02.07.637174. doi: 10.1101/2025.02.07.637174.
Bacterial σ factors bind RNA polymerase (E) to form holoenzyme (Eσ), conferring promoter specificity to E and playing a key role in transcription bubble formation. σ is unique among σ factors in its structure and functional mechanism, requiring activation by specialized AAA+ ATPases. Eσ forms an inactive promoter complex where the N-terminal σ region I (σ-RI) threads through a small DNA bubble. On the opposite side of the DNA, the ATPase engages σ-RI within the pore of its hexameric ring. Here, we perform kinetics-guided structural analysis of formed Eσ initiation complexes and engineer a biochemical assay to measure ATPase-mediated σ-RI translocation during promoter melting. We show that the ATPase exerts mechanical action to translocate about 30 residues of σ-RI through the DNA bubble, disrupting inhibitory structures of σ to allow full transcription bubble formation. A local charge switch of σ-RI from positive to negative may help facilitate disengagement of the otherwise processive ATPase, allowing subsequent σ disentanglement from the DNA bubble.
细菌σ因子与RNA聚合酶(E)结合形成全酶(Eσ),赋予E启动子特异性,并在转录泡形成中起关键作用。σ在其结构和功能机制上在σ因子中是独特的,需要由专门的AAA+ATP酶激活。Eσ形成一个无活性的启动子复合物,其中N端σ区域I(σ-RI)穿过一个小的DNA泡。在DNA的另一侧,ATP酶在其六聚体环的孔内与σ-RI结合。在这里,我们对形成的Eσ起始复合物进行动力学引导的结构分析,并设计了一种生化测定法来测量启动子解链过程中ATP酶介导的σ-RI易位。我们表明,ATP酶施加机械作用,使σ-RI的约30个残基通过DNA泡易位,破坏σ的抑制结构,以允许完全转录泡形成。σ-RI从正到负的局部电荷转换可能有助于促进原本持续的ATP酶的脱离,从而使随后的σ从DNA泡中解缠结。