Li Bo, Tang Ziyang, Budhkar Aishwarya, Liu Xiang, Zhang Tonglin, Yang Baijian, Su Jing, Song Qianqian
Department of Computer and Information Science, University of Macau, Taipa, Macau SAR, China.
Department of Computer and Information Technology, Purdue University, Indiana, USA.
bioRxiv. 2025 Jan 27:2025.01.24.634756. doi: 10.1101/2025.01.24.634756.
Spatial transcriptomics (ST) technologies have revolutionized our understanding of cellular ecosystems. However, these technologies face challenges such as sparse gene signals and limited gene detection capacities, which hinder their ability to fully capture comprehensive spatial gene expression profiles. To address these limitations, we propose leveraging single-cell RNA sequencing (scRNA-seq), which provides comprehensive gene expression data but lacks spatial context, to enrich ST profiles. Herein, we introduce SpaIM, an innovative style transfer learning model that utilizes scRNA-seq information to predict unmeasured gene expressions in ST data, thereby improving gene coverage and expressions. SpaIM segregates scRNA-seq and ST data into data-agnostic contents and data-specific styles, with the contents capture the commonalities between the two data types, while the styles highlight their unique differences. By integrating the strengths of scRNA-seq and ST, SpaIM overcomes data sparsity and limited gene coverage issues, making significant advancements over 12 existing methods. This improvement is demonstrated across 53 diverse ST datasets, spanning sequencing- and imaging-based spatial technologies in various tissue types. Additionally, SpaIM enhances downstream analyses, including the detection of ligand-receptor interactions, spatial domain characterization, and identification of differentially expressed genes. Released as open-source software, SpaIM increases accessibility for spatial transcriptomics analysis. In summary, SpaIM represents a pioneering approach to enrich spatial transcriptomics using scRNA-seq data, enabling precise gene expression imputation and advancing the field of spatial transcriptomics research.
空间转录组学(ST)技术彻底改变了我们对细胞生态系统的理解。然而,这些技术面临着诸如基因信号稀疏和基因检测能力有限等挑战,这阻碍了它们全面捕捉综合空间基因表达谱的能力。为了解决这些局限性,我们建议利用单细胞RNA测序(scRNA-seq)来丰富ST图谱,scRNA-seq可提供全面的基因表达数据,但缺乏空间背景信息。在此,我们介绍SpaIM,这是一种创新的风格迁移学习模型,它利用scRNA-seq信息来预测ST数据中未测量的基因表达,从而提高基因覆盖率和表达量。SpaIM将scRNA-seq和ST数据分离为与数据无关的内容和数据特定的风格,其中内容捕捉了两种数据类型之间的共性,而风格突出了它们独特的差异。通过整合scRNA-seq和ST的优势,SpaIM克服了数据稀疏性和基因覆盖有限的问题,比12种现有方法有了显著进步。在53个不同的ST数据集中都证明了这种改进,这些数据集涵盖了各种组织类型中基于测序和成像的空间技术。此外,SpaIM还增强了下游分析,包括配体-受体相互作用的检测、空间域特征描述以及差异表达基因的识别。作为开源软件发布的SpaIM提高了空间转录组学分析的可及性。总之,SpaIM代表了一种利用scRNA-seq数据丰富空间转录组学的开创性方法,能够实现精确的基因表达插补,并推动空间转录组学研究领域的发展。