Suppr超能文献

基因模块-性状网络分析揭示了与阿尔茨海默病相关的细胞类型特异性系统和基因。

Gene module-trait network analysis uncovers cell type specific systems and genes relevant to Alzheimer's Disease.

作者信息

de Paiva Lopes Katia, Vialle Ricardo A, Green Gilad, Fujita Masashi, Gaiteri Chris, Menon Vilas, Schneider Julie A, Wang Yanling, De Jager Philip L, Habib Naomi, Tasaki Shinya, Bennett David A

机构信息

Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.

The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Israel.

出版信息

bioRxiv. 2025 Feb 1:2025.01.31.635970. doi: 10.1101/2025.01.31.635970.

Abstract

Alzheimer's Disease (AD) is marked by the accumulation of pathology, neuronal loss, and gliosis and frequently accompanied by cognitive decline. Understanding brain cell interactions is key to identifying new therapeutic targets to slow its progression. Here, we used systems biology methods to analyze single-nucleus RNA sequencing (snRNASeq) data generated from dorsolateral prefrontal cortex (DLPFC) tissues of 424 participants in the Religious Orders Study or the Rush Memory and Aging Project (ROSMAP). We identified modules of co-regulated genes in seven major cell types, assigned them to coherent cellular processes, and assessed which modules were associated with AD traits such as cognitive decline, tangle density, and amyloid-β deposition. Coexpression network structure was conserved in the majority of modules across cell types, but we also found distinct communities with altered connectivity, especially when compared to bulk RNASeq, suggesting cell-specific gene co-regulation. These coexpression modules can also capture signatures of cell subpopulations and be influenced by cell proportions. Using a Bayesian network framework, we modeled the direction of relationships between the modules and AD progression. We highlight two key modules, a microglia module (mic_M46), associated with tangles; and an astrocyte module (ast_M19), associated with cognitive decline. Our work provides cell-specific molecular networks modeling the molecular events leading to AD.

摘要

阿尔茨海默病(AD)的特征是病理堆积、神经元丢失和神经胶质增生,并常伴有认知能力下降。了解脑细胞之间的相互作用是确定减缓其进展的新治疗靶点的关键。在这里,我们使用系统生物学方法分析了来自宗教团体研究或拉什记忆与衰老项目(ROSMAP)中424名参与者的背外侧前额叶皮层(DLPFC)组织生成的单核RNA测序(snRNASeq)数据。我们在七种主要细胞类型中确定了共调控基因模块,将它们分配到连贯的细胞过程中,并评估哪些模块与AD特征相关,如认知能力下降、缠结密度和淀粉样β沉积。共表达网络结构在大多数跨细胞类型的模块中是保守的,但我们也发现了连接性改变的不同群落,特别是与整体RNA测序相比,这表明了细胞特异性基因共调控。这些共表达模块还可以捕获细胞亚群的特征,并受细胞比例的影响。使用贝叶斯网络框架,我们对模块与AD进展之间关系的方向进行了建模。我们突出了两个关键模块,一个与缠结相关的小胶质细胞模块(mic_M46);以及一个与认知能力下降相关的星形胶质细胞模块(ast_M19)。我们的工作提供了模拟导致AD的分子事件的细胞特异性分子网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8399/11838413/aad02acf183f/nihpp-2025.01.31.635970v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验