Suppr超能文献

使用SVGAP流程对全基因组组装群体中的结构变异进行基准测试、检测和基因分型。

Benchmarking, detection, and genotyping of structural variants in a population of whole-genome assemblies using the SVGAP pipeline.

作者信息

Hu Ming, Wan Penglong, Chen Chengjie, Tang Shuyuan, Chen Jiahao, Wang Liang, Chakraborty Mahul, Zhou Yongfeng, Chen Jinfeng, Gaut Brandon S, Emerson J J, Liao Yi

机构信息

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangdong 510642, China.

These authors contributed equally to this work.

出版信息

bioRxiv. 2025 Feb 8:2025.02.07.637096. doi: 10.1101/2025.02.07.637096.

Abstract

Comparisons of complete genome assemblies offer a direct procedure for characterizing all genetic differences among them. However, existing tools are often limited to specific aligners or optimized for specific organisms, narrowing their applicability, particularly for large and repetitive plant genomes. Here, we introduce SVGAP, a pipeline for structural variant (SV) discovery, genotyping, and annotation from high-quality genome assemblies at the population level. Through extensive benchmarks using simulated SV datasets at individual, population, and phylogenetic contexts, we demonstrate that SVGAP performs favorably relative to existing tools in SV discovery. Additionally, SVGAP is one of the few tools to address the challenge of genotyping SVs within large assembled genome samples, and it generates fully genotyped VCF files. Applying SVGAP to 26 maize genomes revealed hidden genomic diversity in centromeres, driven by abundant insertions of centromere-specific LTR-retrotransposons. The output of SVGAP is well-suited for pan-genome construction and facilitates the interpretation of previously unexplored genomic regions.

摘要

完整基因组组装的比较提供了一种直接的方法来表征它们之间所有的遗传差异。然而,现有的工具通常局限于特定的比对器,或者针对特定生物进行了优化,这限制了它们的适用性,特别是对于庞大且重复的植物基因组。在这里,我们介绍了SVGAP,这是一种用于在群体水平上从高质量基因组组装中发现结构变异(SV)、进行基因分型和注释的流程。通过在个体、群体和系统发育背景下使用模拟SV数据集进行的广泛基准测试,我们证明SVGAP在SV发现方面相对于现有工具表现出色。此外,SVGAP是应对在大型组装基因组样本中对SV进行基因分型挑战的少数工具之一,并且它能生成完全基因分型的VCF文件。将SVGAP应用于26个玉米基因组,揭示了着丝粒中隐藏的基因组多样性,这是由着丝粒特异性LTR反转录转座子的大量插入驱动的。SVGAP的输出非常适合泛基因组构建,并有助于解释以前未探索的基因组区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/630d/11839052/95261836d85a/nihpp-2025.02.07.637096v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验