Lambert Amaury
Stochastic Models for the Inference of Life Evolution (SMILE), Institute of Biology of ENS (IBENS), CNRS, INSERM, Université PSL, École Normale Supérieure, 46 rue d'Ulm, Paris 75005, France.
Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Collège de France, 11 Place Marcelin Berthelot, Paris 75005, France.
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 13;380(1919):20230305. doi: 10.1098/rstb.2023.0305. Epub 2025 Feb 20.
The paper written in 1925 by G. Udny Yule that we celebrate in this special issue introduces several novelties and results that we recall in detail. First, we discuss Yule's (1925)main legacies over the past century, focusing on empirical frequency distributions with heavy tails and random tree models for phylogenies. We estimate the year when Yule's work was re-discovered by scientists interested in stochastic processes of population growth (1948) and the year from which it began to be cited (1951, Yule's death). We highlight overlooked aspects of Yule's work (e.g. the Yule process of Yule processes) and correct some common misattributions (e.g. the Yule tree). Second, we generalize Yule's results on the average frequency of genera of a given age and size (number of species). We show that his formula also applies to the age [Formula: see text] and size [Formula: see text] of any randomly chosen genus and that the pairs [Formula: see text] are equally distributed and independent across genera. This property extends to triples [Formula: see text], where [Formula: see text] are the coalescence times of the genus phylogeny, even when species diversification within genera follows any integer-valued process, including species extinctions. Studying [Formula: see text] in this broader context allows us to identify cases where [Formula: see text] has a power-law tail distribution, with new applications to urn schemes.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
本期特刊中我们所纪念的、由G. 乌德尼·尤尔于1925年撰写的论文,引入了若干新颖之处和成果,我们将详细回顾这些内容。首先,我们讨论尤尔(1925年)在过去一个世纪的主要遗产,重点关注具有重尾的经验频率分布以及系统发育的随机树模型。我们估算了对种群增长随机过程感兴趣的科学家重新发现尤尔著作的年份(1948年)以及开始引用该著作的年份(1951年,尤尔去世之年)。我们强调了尤尔著作中被忽视的方面(例如尤尔过程中的尤尔过程),并纠正了一些常见的错误归属(例如尤尔树)。其次,我们推广了尤尔关于给定年龄和规模(物种数量)的属的平均频率的结果。我们表明,他的公式也适用于任何随机选择的属的年龄[公式:见正文]和规模[公式:见正文],并且成对的[公式:见正文]在各属之间是均匀分布且相互独立的。这一性质扩展到三元组[公式:见正文],其中[公式:见正文]是属系统发育的合并时间,即使属内物种多样化遵循任何整数值过程,包括物种灭绝。在这个更广泛的背景下研究[公式:见正文]使我们能够识别[公式:见正文]具有幂律尾部分布的情况,并将其应用于新的瓮模型。本文是主题为“进化的数学理论”:可追溯到100年前的系统发育模型的一部分。