Suppr超能文献

上下文子空间辅助场量子蒙特卡罗:利用减少的量子资源改进偏差

Contextual Subspace Auxiliary-Field Quantum Monte Carlo: Improved Bias with Reduced Quantum Resources.

作者信息

Kiser Matthew, Beuerle Matthias, Šimkovic Fedor

机构信息

Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany.

TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.

出版信息

J Chem Theory Comput. 2025 Mar 11;21(5):2256-2271. doi: 10.1021/acs.jctc.4c01280. Epub 2025 Feb 20.

Abstract

Using trial wave functions prepared on quantum devices to reduce the bias of auxiliary-field quantum Monte Carlo (QC-AFQMC) has established itself as a promising hybrid approach to the simulation of strongly correlated many body systems. Here, we further reduce the required quantum resources by decomposing the trial wave function into classical and quantum parts, respectively treated by classical and quantum devices, within the contextual subspace projection formalism. Importantly, we show that our algorithm is compatible with the recently developed matchgate shadow protocol for efficient overlap calculation in QC-AFQMC. Investigating the nitrogen dimer and the reductive decomposition of ethylene carbonate in lithium-based batteries, we observe that our method outperforms a number of established algorithm for ground state energy computations, while reaching chemical precision with less than half of the original number of qubits.

摘要

利用在量子设备上制备的试探波函数来减少辅助场量子蒙特卡罗(QC-AFQMC)的偏差,已成为一种有前途的混合方法,用于模拟强关联多体系统。在此,我们通过在上下文子空间投影形式体系内将试探波函数分解为经典部分和量子部分,分别由经典设备和量子设备处理,进一步减少所需的量子资源。重要的是,我们表明我们的算法与最近开发的用于QC-AFQMC中高效重叠计算的匹配门影子协议兼容。通过研究氮二聚体和锂基电池中碳酸亚乙酯的还原分解,我们观察到我们的方法在基态能量计算方面优于许多既定算法,同时使用不到原始量子比特数一半的情况下达到化学精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验