Suppr超能文献

使用经典影子的固定节点蒙特卡罗的量子计算方法。

Quantum Computing Approach to Fixed-Node Monte Carlo Using Classical Shadows.

作者信息

Blunt Nick S, Caune Laura, Quiroz-Fernandez Javiera

机构信息

Riverlane, Cambridge CB2 3BZ, U.K.

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.

出版信息

J Chem Theory Comput. 2025 Feb 25;21(4):1652-1666. doi: 10.1021/acs.jctc.4c01468. Epub 2025 Feb 5.

Abstract

Quantum Monte Carlo (QMC) methods are powerful approaches for solving electronic structure problems. Although they often provide high-accuracy solutions, the precision of most QMC methods is ultimately limited by the trial wave function that must be used. Recently, an approach has been demonstrated to allow the use of trial wave functions prepared on a quantum computer [Huggins et al., Unbiasing fermionic quantum Monte Carlo with a quantum computer. 2022, 416] in the auxiliary-field QMC (AFQMC) method using classical shadows to estimate the required overlaps. However, this approach has an exponential post-processing step to construct these overlaps when performing classical shadows obtained using random Clifford circuits. Here, we study an approach to avoid this exponential scaling step by using a fixed-node Monte Carlo method based on full configuration interaction quantum Monte Carlo. This method is applied to the local unitary cluster Jastrow ansatz. We consider H, ferrocene, and benzene molecules using up to 12 qubits as examples. Circuits are compiled to native gates for typical near-term architectures, and we assess the impact of circuit-level depolarizing noise on the method. We also provide a comparison of AFQMC and fixed-node approaches, demonstrating that AFQMC is more robust to errors, although extrapolations of the fixed-node energy reduce this discrepancy. Although the method can be used to reach chemical accuracy, the sampling cost to achieve this is high even for small active spaces, suggesting caution about the prospect of outperforming conventional QMC approaches.

摘要

量子蒙特卡罗(QMC)方法是解决电子结构问题的强大手段。尽管它们通常能提供高精度的解决方案,但大多数QMC方法的精度最终受限于必须使用的试探波函数。最近,一种方法已被证明可在辅助场QMC(AFQMC)方法中使用在量子计算机上制备的试探波函数[哈金斯等人,《用量子计算机消除费米子量子蒙特卡罗的偏差》。2022年,416],利用经典影子来估计所需的重叠。然而,当执行使用随机克利福德电路获得的经典影子时,这种方法在构建这些重叠时有一个指数级的后处理步骤。在这里,我们研究一种通过使用基于完全组态相互作用量子蒙特卡罗的固定节点蒙特卡罗方法来避免这个指数缩放步骤的方法。该方法应用于局部幺正团簇贾斯特罗近似。我们以使用多达12个量子比特的H、二茂铁和苯分子为例。针对典型的近期架构将电路编译为本征门,并且我们评估电路级去极化噪声对该方法的影响。我们还对AFQMC和固定节点方法进行了比较,表明AFQMC对误差更具鲁棒性,尽管固定节点能量的外推减少了这种差异。尽管该方法可用于达到化学精度,但即使对于小的活性空间,实现这一点的采样成本也很高,这表明对其超越传统QMC方法的前景需谨慎看待。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be92/11866757/2c6aee5a5812/ct4c01468_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验