Wang Shixun, Wang Shengnan, Wei Zhiquan, Wang Yiqiao, Zhang Dechao, Chen Ze, Zhi Chunyi
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China.
Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE) Shatin, Hong Kong SAR, PR China.
Nat Commun. 2025 Feb 20;16(1):1800. doi: 10.1038/s41467-025-56607-1.
Zinc-ion batteries have demonstrated promising potential for future energy storage, whereas drawbacks, including dendrite growth, hydrogen evolution reaction, and localized deposition, heavily hinder their development for practical applications. Herein, unlike elaborated structural design and electrolyte excogitation, we introduce an effective parts-per-million (ppm)-scale electrolyte additive, phosphonoglycolic acid (PPGA), to overcome the intrinsic issues of zinc negative electrode in mild acidic aqueous electrolytes. Profiting from absorbed PPGA on zinc surface and its beneficial interaction with hydrogen bonds of adjacent water molecules, stable symmetric stripping/plating of zinc in aqueous ZnSO electrolyte at around 25 C was achieved, procuring 362 and 350 days of operation at 1 mA cm, 1 mAh cm and 10 mA cm, 1 mAh cm, respectively. As a proof-of-concept, an Ah-level Zn||ZnVO·nHO pouch cell examined the validity of PPGA and sustained 250 cycles at 0.2 A g and around 25 C without capacity loss. The Zn||Br redox flow battery demonstrated an operation of over 800 h at 40 mA cm, 20 mAh cm with an average coulombic efficiency of 98%, which is attributed to restrained dendrite growth and side effects. This work is believed to open up new ways forward for knowledge of electrolyte additive engineering.
锌离子电池已展现出在未来储能方面的巨大潜力,然而,诸如枝晶生长、析氢反应和局部沉积等缺点严重阻碍了其在实际应用中的发展。在此,与精心设计的结构和电解液不同,我们引入了一种有效的百万分之一(ppm)级电解液添加剂——膦酰基乙醇酸(PPGA),以克服在弱酸性水系电解液中锌负极的固有问题。得益于锌表面吸附的PPGA及其与相邻水分子氢键的有益相互作用,在约25℃的ZnSO水系电解液中实现了锌的稳定对称剥离/电镀,分别在1 mA cm、1 mAh cm和10 mA cm、1 mAh cm下实现了362天和350天的运行。作为概念验证,一个容量为1 Ah的Zn||ZnVO·nHO软包电池验证了PPGA的有效性,并在0.2 A g和约25℃下持续运行250次循环而无容量损失。Zn||Br氧化还原液流电池在40 mA cm、20 mAh cm下运行超过800小时,平均库仑效率为98%,这归因于枝晶生长和副作用得到抑制。这项工作有望为电解液添加剂工程知识开辟新的道路。