Suppr超能文献

具有氢键/离子双重调控机制的纤维素基聚离子液体用于高可逆锌阳极的设计

Design of cellulosic poly(ionic liquid)s with a hydrogen bond/ion dual regulation mechanism for highly reversible Zn anodes.

作者信息

Chen Kui, Xu Yongzhen, Li Hebang, Li Yue, Zhang Lihua, Guo Yuanlong, Xu Qinqin, Li Yunqi, Xie Haibo

机构信息

Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University Huaxi District Guiyang 550025 P. R. China

Technology Innovation Center for High-Efficiency Utilization of Bamboo-Based Biomass in Guizhou Province Guiyang 550025 China.

出版信息

Chem Sci. 2025 Apr 9;16(20):8648-8660. doi: 10.1039/d5sc01555c. eCollection 2025 May 21.

Abstract

The unstable electrode/electrolyte interface with erratic zinc (Zn) deposition, severe dendritic growth and parasitic side reactions deteriorates the reversibility, tolerance and sustainability of aqueous Zn ion batteries (AZIBs). Herein, an imidazolium-based cellulosic poly(ionic liquid) ([CellMim]) additive with a hydrogen bond/ion dual regulation mechanism for aqueous electrolyte is designed and prepared a transesterification reaction by considering particular solvent properties. The water-rich Zn anode interface is significantly optimized by hydrogen bond (HB) formation and preferential adsorption of [CellMim]. Additionally, the overfed Zn ions are modulated by [CellMim] cations though electrostatic repulsion, fostering uniform Zn deposition and a solid electrolyte interface (SEI). Notably, the Zn‖Zn cells with [CellMim] modified Zn(OTf) electrolyte exhibit a long cycle life over 1800 h at 1 mA cm and a high cumulative capacity of 3700 mA h cm at 10 mA cm with 56.9% Zn utilization rate (ZUR). Intriguingly, this electrolyte demonstrates a remarkable durability of 260 h at 8 mA cm with 22.77% ZUR for a 9 cm pouch cell. These results highlight the great potential of cellulosic derivatives in battery applications and offer valuable insights into the design of sustainable aqueous electrolyte additives for AZIBs.

摘要

不稳定的电极/电解质界面会出现不稳定的锌(Zn)沉积、严重的枝晶生长和寄生副反应,这会降低水系锌离子电池(AZIBs)的可逆性、耐受性和可持续性。在此,通过考虑特定的溶剂性质,利用酯交换反应设计并制备了一种基于咪唑鎓的纤维素基聚离子液体([CellMim])添加剂,用于水系电解质,其具有氢键/离子双重调节机制。通过形成氢键(HB)和[CellMim]的优先吸附,富水的锌阳极界面得到了显著优化。此外,过量的锌离子通过[CellMim]阳离子的静电排斥作用进行调节,促进了锌的均匀沉积和固体电解质界面(SEI)的形成。值得注意的是,采用[CellMim]改性的Zn(OTf)电解质的锌||锌电池在1 mA cm下表现出超过1800 h的长循环寿命,在10 mA cm下具有3700 mA h cm的高累积容量,锌利用率(ZUR)为56.9%。有趣的是,这种电解质在9 cm软包电池中,在8 mA cm下表现出260 h的显著耐久性,锌利用率为22.77%。这些结果突出了纤维素衍生物在电池应用中的巨大潜力,并为AZIBs可持续水系电解质添加剂的设计提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7373/12093473/58c1c9de9a3a/d5sc01555c-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验