Suppr超能文献

一种处理连续血糖监测数据以解决现实世界数据质量问题的算法。

A Processing Algorithm to Address Real-World Data Quality Issues With Continuous Glucose Monitoring Data.

作者信息

Williamson Walter, Lee Joyce M, Gaynanova Irina

机构信息

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Susan B. Meister Child Health Evaluation and Research Center, Division of Pediatric Endocrinology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.

出版信息

J Diabetes Sci Technol. 2025 Feb 20:19322968251319801. doi: 10.1177/19322968251319801.

Abstract

Continuous glucose monitoring (CGM) data stored in data warehouses often include duplicated or time-shifted uploads from the same patient, compromising data quality and accuracy of resulting CGM metrics. We developed a processing algorithm to detect and resolve these errors. We validated the algorithm using two weeks of CGM data from 2038 patients with diabetes. Duplication errors were identified in 528 patients, with 25.7% showing significant differences in at least one metric (Time in Range, Coefficient of Variation, Glycemic Management Indicator, or Glycemic Episode counts) between raw and processed data. Eleven patients crossed clinically meaningful thresholds in one or more metrics after processing. Our results underscore the importance of real-world CGM data processing to maintain accurate and reliable CGM metrics for research and clinical care.

摘要

存储在数据仓库中的连续血糖监测(CGM)数据通常包含来自同一患者的重复或时间偏移的上传数据,这会影响数据质量以及由此产生的CGM指标的准确性。我们开发了一种处理算法来检测和解决这些错误。我们使用来自2038名糖尿病患者的两周CGM数据对该算法进行了验证。在528名患者中发现了重复错误,其中25.7%的患者在原始数据和处理后的数据之间至少有一项指标(血糖达标时间、变异系数、血糖管理指标或血糖事件计数)存在显著差异。11名患者在处理后有一项或多项指标超过了临床意义阈值。我们的结果强调了在现实世界中进行CGM数据处理对于为研究和临床护理维持准确可靠的CGM指标的重要性。

相似文献

本文引用的文献

5
Interpreting blood GLUcose data with R package iglu.使用 R 包 iglu 解读血糖数据。
PLoS One. 2021 Apr 1;16(4):e0248560. doi: 10.1371/journal.pone.0248560. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验