Suppr超能文献

使用宏条形码方法识别潜在的昆虫生态相互作用。

Identification of potential insect ecological interactions using a metabarcoding approach.

作者信息

Borsato Nicole D, Lunn Katherine, Garrett Nina R, Biganzoli-Rangel Alejandro José, Marquina Daniel, Steinke Dirk, Floyd Robin, Clare Elizabeth L

机构信息

Biology, York University, Toronto, ON, Canada.

AllGenetics, Perillo, Spain.

出版信息

PeerJ. 2025 Feb 17;13:e18906. doi: 10.7717/peerj.18906. eCollection 2025.

Abstract

Species interactions are challenging to quantify, particularly when they happen cryptically. Molecular methods have become a key tool to uncover these interactions when they leave behind a DNA trace from the interacting organism (., pollen on a bee) or when the taxa are still present but morphologically challenging to identify (., microbial or fungal interactions). The decreasing costs of sequencing makes the mass analysis of thousands of target species possible. However, the challenge has shifted to selecting molecular markers which maximize information recovery while analyzing these data at broad biological scales. In this manuscript we use model arthropod groups to compare molecular markers and their analysis across life stages. We develop protocols for two ecologically and economically devastating pests, the spongy moth () and the emerald ash borer (), and a group of pollinators including bees and wasps which regularly deposit eggs in "bee hotels" where the larvae develop. Using Illumina MiSeq and Oxford Nanopore MinION platforms we evaluate seven primer pairs for five molecular markers which target plants, fungi, microbes, insects, and parasitic phyla (, nematodes). Our data reveals hundreds of potential ecological interactions and establishes generalized methods which can be applied across arthropod host taxa with recommendations on the appropriate markers in different systems. However, we also discuss the challenge of differentiating co-occurring DNA signals and true ecological interactions, a problem only starting to be recognized as eDNA from the environment accumulates on living organisms.

摘要

物种间的相互作用难以量化,尤其是当它们以隐秘的方式发生时。当相互作用的生物体留下DNA痕迹(如蜜蜂身上的花粉),或者当分类群仍然存在但在形态上难以识别(如微生物或真菌相互作用)时,分子方法已成为揭示这些相互作用的关键工具。测序成本的不断降低使得对数千个目标物种进行大规模分析成为可能。然而,挑战已转向选择分子标记,以便在广泛的生物学尺度上分析这些数据时最大限度地恢复信息。在本论文中,我们使用模型节肢动物群体来比较分子标记及其在不同生命阶段的分析。我们为两种在生态和经济上具有毁灭性的害虫——舞毒蛾(Lymantria dispar)和翡翠灰螟(Agrilus planipennis),以及一组传粉者(包括蜜蜂和黄蜂,它们经常在“蜜蜂旅馆”中产卵,幼虫在那里发育)制定了方案。我们使用Illumina MiSeq和牛津纳米孔MinION平台,针对针对植物、真菌、微生物、昆虫和寄生门类(如线虫)的五个分子标记评估了七对引物。我们的数据揭示了数百种潜在的生态相互作用,并建立了可应用于节肢动物宿主分类群的通用方法,并针对不同系统中合适的标记给出了建议。然而,我们也讨论了区分同时出现的DNA信号和真正的生态相互作用的挑战,随着来自环境的环境DNA(eDNA)在生物体上积累,这个问题才刚刚开始被认识到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f970/11841592/5ae820a6ca64/peerj-13-18906-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验