Suppr超能文献

分子氧的活化及金属配合物的选择性氧化

Activation of Molecular Oxygen and Selective Oxidation with Metal Complexes.

作者信息

Wang Chao, Xiao Jianliang

机构信息

School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, China.

Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.

出版信息

Acc Chem Res. 2025 Mar 4;58(5):714-731. doi: 10.1021/acs.accounts.4c00731. Epub 2025 Feb 21.

Abstract

ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry. It is also nature's choice of oxidant and drives a variety of oxidation reactions critical to life and various other biologic processes. While the past decades have witnessed great progress in understanding, both structurally and mechanistically, how nature exploits metalloenzymes, i.e., monooxygenases and dioxygenases, to tackle some of the most challenging oxidation reactions, e.g., methane oxidation to methanol, there are only a small number of well-defined, man-made metal complexes that have been reported to enable selective oxidation with molecular oxygen of compounds more relevant to fine chemical and pharmaceutical synthesis.In the past 10 years or so, our laboratories have developed several transition metal complexes and shown that they are capable of catalyzing selective oxidation under 1 atm of O. Thus, we have shown that an Fe(II)-bisimidazolidinyl-pyridine complex catalyzes selective oxygenation of C-H bonds in ethers with concomitant release of hydrogen gas instead of water, and when the iron center is replaced with Fe(III), selective oxidative cleavage of C═C bonds of olefins becomes feasible. To address the low activity of the iron complex in oxidizing less active olefins, we have developed a Mn(II)-bipyridine complex, which catalyzes oxidative cleavage of C═C bonds in aliphatic olefins, C-C bonds in diols, and carboxyl units in carboxylic acids under visible light irradiation. Light is necessary in the oxidation to cleave an off-cycle, inactive manganese dimer into a catalytically active Mn═O oxo species. Furthermore, we have found that a binuclear salicylate-bridged Cu(II) complex enables the C-H oxidation of tetrahydroisoquinolines as well as C═C bond cleavage, and when a catalytic vitamin B1 analogue is brought in, oxygenation of tetrahydroisoquinolines to lactams takes place via carbene catalysis. Still further, we have found that a readily accessible binuclear Rh(II)-terpyridine complex catalyzes the oxidation of alcohols, and being water-soluble, the catalyst can be easily separated and reused multiple times. In addition, we recently unearthed a simple protocol that allows waste polystyrene to be depolymerized to isolable, valuable chemicals. A cheap Brønsted acid acts as the catalyst, activating molecular oxygen to a singlet state through complexation with the polymer under light irradiation, thereby depolymerizing the polymer.

摘要

综述

用分子氧进行选择性氧化是有机分子功能化最具吸引力的方法之一,但同时也是有机合成面临的最具挑战性的反应之一,因为选择性控制较差。分子氧是一种绿色且廉价的氧化剂,氧化过程中仅产生水作为唯一副产物。毫不奇怪,它已被用于工业上许多商品化学品的生产。它也是自然界选择的氧化剂,驱动着对生命和各种其他生物过程至关重要的各种氧化反应。尽管在过去几十年中,在从结构和机理上理解自然界如何利用金属酶(即单加氧酶和双加氧酶)来处理一些最具挑战性的氧化反应(例如将甲烷氧化为甲醇)方面取得了巨大进展,但据报道,只有少数明确的人造金属配合物能够使与精细化学品和药物合成更相关的化合物用分子氧进行选择性氧化。

在过去大约10年中,我们的实验室开发了几种过渡金属配合物,并表明它们能够在1个大气压的氧气下催化选择性氧化。因此,我们已经表明,一种Fe(II)-双咪唑啉基吡啶配合物催化醚中C-H键的选择性氧化,同时释放氢气而不是水,并且当铁中心被Fe(III)取代时,烯烃C═C键的选择性氧化裂解变得可行。为了解决铁配合物在氧化活性较低的烯烃时活性较低的问题,我们开发了一种Mn(II)-联吡啶配合物,它在可见光照射下催化脂肪族烯烃中的C═C键、二醇中的C-C键以及羧酸中的羧基单元的氧化裂解。氧化过程中需要光将一个非循环的、无活性的锰二聚体裂解成具有催化活性的Mn═O氧代物种。此外,我们发现一种双核水杨酸盐桥联的Cu(II)配合物能够实现四氢异喹啉的C-H氧化以及C═C键裂解,并且当引入一种催化性维生素B1类似物时,四氢异喹啉通过卡宾催化氧化为内酰胺。更进一步,我们发现一种易于获得的双核Rh(II)-三联吡啶配合物催化醇的氧化,并且由于该催化剂可溶于水,因此可以很容易地分离并多次重复使用。此外,我们最近发现了一种简单的方法,可使废聚苯乙烯解聚为可分离的有价值化学品。一种廉价的布朗斯特酸充当催化剂,在光照射下通过与聚合物络合将分子氧活化成单线态,从而使聚合物解聚。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcc2/11883747/54f180c754b3/ar4c00731_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验