Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto FI-00076, Finland.
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto FI-00076, Finland.
Neuroimage. 2021 Dec 15;245:118747. doi: 10.1016/j.neuroimage.2021.118747. Epub 2021 Nov 28.
In this paper, we analyze spatial sampling of electro- (EEG) and magnetoencephalography (MEG), where the electric or magnetic field is typically sampled on a curved surface such as the scalp. By simulating fields originating from a representative adult-male head, we study the spatial-frequency content in EEG as well as in on- and off-scalp MEG. This analysis suggests that on-scalp MEG, off-scalp MEG and EEG can benefit from up to 280, 90 and 110 spatial samples, respectively. In addition, we suggest a new approach to obtain sensor locations that are optimal with respect to prior assumptions. The approach also allows to control, e.g., the uniformity of the sensor locations. Based on our simulations, we argue that for a low number of spatial samples, model-informed non-uniform sampling can be beneficial. For a large number of samples, uniform sampling grids yield nearly the same total information as the model-informed grids.
在本文中,我们分析了脑电(EEG)和脑磁图(MEG)的空间采样,其中电场或磁场通常在头皮等曲面上进行采样。通过模拟源自代表性成年男性头部的场,我们研究了 EEG 以及在头皮上和头皮外 MEG 的空间频率内容。这项分析表明,在头皮上的 MEG、头皮外的 MEG 和 EEG 可以分别受益于多达 280、90 和 110 个空间样本。此外,我们还提出了一种新的方法来获得相对于先验假设最优的传感器位置。该方法还可以控制传感器位置的均匀性等。基于我们的模拟,我们认为对于较少的空间样本,基于模型的非均匀采样可能是有益的。对于大量样本,均匀采样网格产生的总信息量几乎与基于模型的网格相同。