Suppr超能文献

通过对尿液生物标志物的机器学习分析识别烟草使用模式及相关心血管疾病风险

Identifying Patterns of Tobacco Use and Associated Cardiovascular Disease Risk Through Machine Learning Analysis of Urine Biomarkers.

作者信息

Siegel Noah A, Zhao Juan, Benjamin Emelia J, Bhatnagar Aruni, Hall Jennifer L, Stokes Andrew C

机构信息

Department of Medicine, Boston Medical Center, Boston University Chobanian, and Avedisian School of Medicine, Boston, Massachusetts, USA.

Data Science and Evaluation, American Heart Association, Dallas, Texas, USA.

出版信息

JACC Adv. 2025 Mar;4(3):101630. doi: 10.1016/j.jacadv.2025.101630. Epub 2025 Feb 22.

Abstract

BACKGROUND

Tobacco use remains a leading cause of disability-adjusted life years lost in the United States. Cardiovascular harm varies by tobacco product type and usage patterns, yet reliable methods for assessing exposure and harm across different products, especially novel tobacco products, are limited.

OBJECTIVES

The authors aimed to identify distinct biomarker exposure patterns associated with different tobacco products using cluster analysis and validate this approach through longitudinal analysis of cardiovascular disease risk.

METHODS

Using the Population Assessment of Tobacco and Health data set, we performed cluster analysis and geometric mean modeling of tobacco-related biomarkers, followed by a longitudinal retrospective cohort study with Cox proportional hazard modeling used to examine associations between clusters and a primary composite outcome of heart failure, myocardial infarction, or stroke.

RESULTS

Examining 6,463 individuals, we identified 5 clusters: never users (cluster 1), predominant e-cigarette users (cluster 4), cigarette/dual users (cluster 2), and mixed tobacco users (clusters 3 and 5). All clusters showed elevated biomarkers of oxidative stress and inflammation compared to cluster 1, with clusters 2 and 3 showing the highest levels. Multivariable analysis revealed significantly higher cardiovascular disease risk in cluster 2 vs cluster 1 (HR: 2.24; 95% CI: 1.17-4.30), while other clusters showed elevated but nonsignificant risks.

CONCLUSIONS

Our categorization of exposure through cluster analysis provides a potential tool for evaluating the use of emerging tobacco products and establishing a connection between novel exposures and cardiovascular risk. This approach may contribute to the validation of a valuable tool for assessing the risk associated with the use of different tobacco products.

摘要

背景

在美国,烟草使用仍是导致伤残调整生命年损失的主要原因。心血管危害因烟草产品类型和使用模式而异,但评估不同产品(尤其是新型烟草产品)暴露情况和危害的可靠方法有限。

目的

作者旨在通过聚类分析确定与不同烟草产品相关的独特生物标志物暴露模式,并通过心血管疾病风险的纵向分析验证该方法。

方法

利用烟草与健康人口评估数据集,我们对烟草相关生物标志物进行了聚类分析和几何均值建模,随后进行了纵向回顾性队列研究,使用Cox比例风险模型来检验聚类与心力衰竭、心肌梗死或中风的主要复合结局之间的关联。

结果

在对6463名个体进行研究时,我们确定了5个聚类:从不使用者(聚类1)、主要使用电子烟者(聚类4)、香烟/双重使用者(聚类2)以及混合烟草使用者(聚类3和5)。与聚类1相比,所有聚类的氧化应激和炎症生物标志物水平均升高,聚类2和聚类3的水平最高。多变量分析显示,聚类2的心血管疾病风险显著高于聚类1(风险比:2.24;95%置信区间:1.17 - 4.30),而其他聚类的风险虽有所升高但不显著。

结论

我们通过聚类分析对暴露情况进行的分类为评估新兴烟草产品的使用以及建立新型暴露与心血管风险之间的联系提供了一个潜在工具。这种方法可能有助于验证一种评估不同烟草产品使用相关风险的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daf7/11904550/8962a0390783/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验