Suppr超能文献

利用人工智能增强儿科骨龄评估:对整形外科的影响。

Enhancing Pediatric Bone Age Assessment Using Artificial Intelligence: Implications for Orthopedic Surgery.

作者信息

Zadoo Nalin, Tak Nathaniel, Reddy Akshay J, Patel Rakesh

机构信息

Medicine, Midwestern University Arizona College of Osteopathic Medicine, Glendale, USA.

Medicine, California University of Science and Medicine, Colton, USA.

出版信息

Cureus. 2025 Feb 23;17(2):e79507. doi: 10.7759/cureus.79507. eCollection 2025 Feb.

Abstract

Background Bone age assessment is a critical tool in pediatric orthopedic surgery, guiding treatment decisions for growth-related disorders and surgical interventions. Traditional methods, such as the Greulich-Pyle and Tanner-Whitehouse techniques, rely on manual interpretation of hand and wrist radiographs, making them time-intensive and susceptible to inter-operator variability. Artificial intelligence (AI) has emerged as a promising tool to enhance accuracy, efficiency, and standardization in skeletal maturity assessment. Methods This study evaluates the application of AI in pediatric bone age prediction using the Radiological Society of North America (RSNA) 2017 Pediatric Bone Age Challenge dataset. A deep learning model based on the ResNet-50 architecture (Microsoft Research, Redmond, Washington, USA) was developed and trained on 12,611 hand and wrist radiographs, validated on 1,425 images, and tested on 200 images. Model performance was assessed using root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R²). Results The AI model achieved an RMSE of 11.07 months, an MAE of 8.54 months, and an R² of 0.929, indicating strong alignment with radiologist-determined bone ages. The Pearson correlation coefficient (0.963) and Spearman's rank correlation (0.955) confirmed the model's predictive robustness. Compared to traditional methods, which have reported variability with errors ranging from 6 to 18 months, the AI model demonstrated a reduction in inter-operator variability and improved reliability. Conclusion The implementation of AI in bone age assessment offers a more standardized, rapid, and precise alternative to conventional methods. By improving the accuracy and efficiency of skeletal maturity evaluations, AI has significant implications for pediatric orthopedic surgery, optimizing treatment timing and expanding access to high-quality bone age assessments. Further validation studies are needed to ensure clinical applicability across diverse patient populations.

摘要

背景

骨龄评估是小儿骨科手术中的一项关键工具,可为与生长相关的疾病及手术干预提供治疗决策指导。传统方法,如格-派(Greulich-Pyle)法和坦纳-怀特豪斯(Tanner-Whitehouse)法,依赖对手部和腕部X光片的人工解读,既耗时又易受操作者间差异的影响。人工智能(AI)已成为提高骨骼成熟度评估准确性、效率和标准化的一项有前景的工具。

方法

本研究使用北美放射学会(RSNA)2017年小儿骨龄挑战数据集评估AI在小儿骨龄预测中的应用。开发了一种基于ResNet-50架构(美国华盛顿州雷德蒙德微软研究院)的深度学习模型,并在12,611张手部和腕部X光片上进行训练,在1,425张图像上进行验证,并在200张图像上进行测试。使用均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)评估模型性能。

结果

AI模型的RMSE为11.07个月,MAE为8.54个月,R²为0.929,表明与放射科医生确定的骨龄高度一致。皮尔逊相关系数(0.963)和斯皮尔曼等级相关系数(0.955)证实了该模型的预测稳健性。与传统方法报告的误差范围在6至18个月之间的变异性相比,AI模型显示出操作者间变异性的降低和可靠性的提高。

结论

在骨龄评估中应用AI为传统方法提供了一种更标准化、快速且精确的替代方案。通过提高骨骼成熟度评估的准确性和效率,AI对小儿骨科手术具有重要意义,可优化治疗时机并扩大高质量骨龄评估的可及性。需要进一步的验证研究以确保在不同患者群体中的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7183/11847569/d722a985f783/cureus-0017-00000079507-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验