Suppr超能文献

机器学习驱动的中国污水处理厂电力消耗基准测试

Machine learning-driven benchmarking of China's wastewater treatment plant electricity consumption.

作者信息

Li Minjian, Tang Chongqiao, Gu Junhan, Li Nianchu, Zhou Ahemaide, Wu Kunlin, Zhang Zhibo, Huang Hui, Ren Hongqiang

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.

出版信息

Water Res X. 2025 Feb 2;26:100309. doi: 10.1016/j.wroa.2025.100309. eCollection 2025 Jan 1.

Abstract

Benchmarking electricity consumption of wastewater treatment plants (WWTPs) is fundamental for sustainable wastewater management, as these facilities have a concomitant electricity-intensive nature along with their pollutant removal and resource recovery functions. Due to the challenge of characterizing influent water quality using traditional methods, satisfactory benchmarks have long been elusive. To overcome the complexity of wastewater compositions, an unsupervised machine learning algorithm, spectral clustering, is introduced to analyze 2,576 WWTPs across China, effectively characterizing influent quality as a single variable and contributing to robust benchmarks with 75 % of the fittings achieving coefficients of determination (R) >0.85. The benchmarks are established with four critical parameters influencing electricity consumption: scale, influent quality, discharge standard and treatment process. Regional variations of the four parameters and their effects on regional WWTP electricity consumption are elaborated. Results indicate that the overall influent concentration characterized by spectral clustering is the major influencing factor of regional WWTP annual average electricity consumption per unit of volume (UEC). The findings not only enhance understanding of WWTP electricity consumption patterns and provide a scalable model for wider application, but also demonstrate a novel methodology for addressing multi-variable problems.

摘要

对污水处理厂(WWTPs)的电力消耗进行基准测试是可持续污水处理管理的基础,因为这些设施在具有污染物去除和资源回收功能的同时,还具有电力密集型的特点。由于使用传统方法表征进水水质存在挑战,长期以来一直难以获得令人满意的基准。为了克服废水成分的复杂性,引入了一种无监督机器学习算法——谱聚类,对中国各地的2576个污水处理厂进行分析,有效地将进水水质表征为一个单一变量,并为稳健的基准测试做出贡献,75%的拟合达到决定系数(R)>0.85。基准是根据影响电力消耗的四个关键参数建立的:规模、进水水质、排放标准和处理工艺。阐述了这四个参数的区域差异及其对区域污水处理厂电力消耗的影响。结果表明,通过谱聚类表征的总体进水浓度是区域污水处理厂单位体积年平均电力消耗(UEC)的主要影响因素。这些发现不仅增进了对污水处理厂电力消耗模式的理解,并提供了一个可扩展的模型以供更广泛应用,还展示了一种解决多变量问题的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4af/11847466/060ed650d332/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验