Suppr超能文献

利用人类颅内脑电图从自然语音中解码语义。

Decoding semantics from natural speech using human intracranial EEG.

作者信息

Pescatore Camille R C, Zhang Haoyu, Hadjinicolaou Alex E, Paulk Angelique C, Rolston John D, Richardson R Mark, Williams Ziv M, Cai Jing, Cash Sydney S

机构信息

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA.

出版信息

bioRxiv. 2025 Feb 11:2025.02.10.637051. doi: 10.1101/2025.02.10.637051.

Abstract

Brain-computer interfaces (BCIs) hold promise for restoring natural language production capabilities in patients with speech impairments, potentially enabling smooth conversation that conveys meaningful information via synthesized words. While considerable progress has been made in decoding phonetic features of speech, our ability to extract lexical semantic information (i.e. the meaning of individual words) from neural activity remains largely unexplored. Moreover, most existing BCI research has relied on controlled experimental paradigms rather than natural conversation, limiting our understanding of semantic decoding in ecological contexts. Here, we investigated the feasibility of decoding lexical semantic information from stereo-electroencephalography (sEEG) recordings in 14 participants during spontaneous conversation. Using multivariate pattern analysis, we were able to decode word level semantic features during language production with an average accuracy of 21% across all participants compared to a chance level of 10%. This semantic decoding remained robust across different semantic representations while maintaining specificity to semantic features. Further, we identified a distributed left-lateralized network spanning precentral gyrus, pars triangularis, and middle temporal cortex, with low-frequency oscillations showing stronger contributions. Together, our results establish the feasibility of extracting word meanings from neural activity during natural speech production and demonstrate the potential for decoding semantic content from unconstrained speech.

摘要

脑机接口(BCIs)有望恢复言语障碍患者的自然语言生成能力,有可能实现通过合成词进行有意义信息传递的流畅对话。虽然在解码语音的语音特征方面已经取得了相当大的进展,但我们从神经活动中提取词汇语义信息(即单个单词的含义)的能力在很大程度上仍未得到探索。此外,大多数现有的脑机接口研究依赖于受控实验范式而非自然对话,这限制了我们对生态环境中语义解码的理解。在此,我们研究了在14名参与者自发对话期间从立体脑电图(sEEG)记录中解码词汇语义信息的可行性。使用多变量模式分析,我们能够在语言生成过程中解码单词级别的语义特征,所有参与者的平均准确率为21%,而随机水平为10%。这种语义解码在不同的语义表示中保持稳健,同时保持对语义特征的特异性。此外,我们确定了一个分布在中央前回、三角部和颞中皮质的左侧化网络,低频振荡显示出更强的贡献。总之,我们的结果确立了在自然言语产生过程中从神经活动中提取单词含义的可行性,并证明了从无约束言语中解码语义内容的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d64b/11844374/bcabe0368694/nihpp-2025.02.10.637051v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验