Martyr Justin G, Zafferani Martina, Bailey Morgan A, Zorawski Marek D, Montalvan Nadeska I, Muralidharan Dhanasheel, Fitzgerald Michael C, Hargrove Amanda E
Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
Department of Chemistry, Duke University, Durham, NC 27708, USA.
bioRxiv. 2025 Feb 12:2025.02.10.637408. doi: 10.1101/2025.02.10.637408.
The potential of therapeutically targeting RNA with small molecules continues to grow yet progress is hindered by difficulties in determining specific mechanisms of action, including impacts on RNA-protein binding. RNA G-quadruplexes (rGQs) are a particularly promising target due to their range of biological functions, structural stability, and hydrophobic surfaces, which promote small molecule and protein interactions alike. Challenges arise due to 1) the low structural diversity among rGQs, thereby limiting binding selectivity, and 2) a lack of knowledge regarding how small molecules can manipulate rGQ-protein binding on a global scale. We first leveraged a small molecule library privileged for RNA tertiary structures that displayed differential binding to rGQs based on loop length, consistent with computational predictions for DNA GQs. We next utilized an RT-qPCR-based assay to measure stability against enzymatic readthrough, expected to be a common mechanism in rGQ function. We discovered small molecules with significant, bidirectional impacts on rGQ stability, even within the same scaffold. Using Stability of Proteins from Rates of Oxidation (SPROX), a stability-based proteomics method, we then elucidated proteome level impacts of both stabilizing and destabilizing rGQ-targeting molecules on rGQ-protein interactions. This technique revealed small molecule-induced impacts on a unique subset of rGQ-binding proteins, along with proteins that exhibited differential changes based on the identity of the small molecule. The domain and peptide-level insights resulting from SPROX allow for the generation of specific hypotheses for both rGQ function and small molecule modulation thereof. Taken altogether, this methodology helps bridge the gap between small molecule-RNA targeting and RNA-protein interactions, providing insight into how small molecules can influence protein binding partners through modulation of target RNA structures.
利用小分子对RNA进行治疗性靶向的潜力不断增长,但由于在确定具体作用机制(包括对RNA-蛋白质结合的影响)方面存在困难,进展受到阻碍。RNA G-四链体(rGQ)是一个特别有前景的靶点,因为它们具有广泛的生物学功能、结构稳定性和疏水表面,这有利于小分子和蛋白质之间的相互作用。挑战源于以下两点:1)rGQ之间的结构多样性较低,从而限制了结合选择性;2)缺乏关于小分子如何在全球范围内操纵rGQ-蛋白质结合的知识。我们首先利用了一个对RNA三级结构具有特异性的小分子文库,该文库根据环长度对rGQ表现出差异结合,这与DNA GQ的计算预测一致。接下来,我们利用基于RT-qPCR的检测方法来测量对酶通读的稳定性,酶通读预计是rGQ功能中的一种常见机制。我们发现了一些小分子,它们对rGQ稳定性有显著的双向影响,即使在同一支架内也是如此。然后,我们使用基于氧化速率的蛋白质稳定性(SPROX)这一基于稳定性的蛋白质组学方法,阐明了稳定和破坏rGQ靶向分子对rGQ-蛋白质相互作用的蛋白质组水平影响。这项技术揭示了小分子对rGQ结合蛋白的一个独特子集的影响,以及根据小分子的特性表现出不同变化的蛋白质。SPROX产生的结构域和肽水平的见解有助于为rGQ功能及其小分子调节生成具体假设。综上所述,这种方法有助于弥合小分子-RNA靶向与RNA-蛋白质相互作用之间的差距,深入了解小分子如何通过调节靶RNA结构来影响蛋白质结合伙伴。