Wang Fen, Wei Xue-Wu, Yang Ming-Yi, Lu Chang, Yang Xiao-Rong, Deng Jia-Yi, Chen Zhi-Hong, Zhou Qing
Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Thorac Cancer. 2025 Feb;16(4):e70025. doi: 10.1111/1759-7714.70025.
The epidermal growth factor receptor mutant (EGFRm) non-small cell lung cancer (NSCLC) has a unique "cold" immune profile. DNA damage repair (DDR) genes are closely related to tumorigenesis and the effectiveness of immunotherapy in many tumors. However, the role and mechanism of DDR in the genesis and progression of EGFRm NSCLC remain unclear.
This study included 101 EGFRm NSCLC samples from The Cancer Genome Atlas (TCGA) dataset and a GSE31210 dataset (external set) from the GEO database. Cluster analysis was used to identify different subtypes of EGFRm NSCLC based on the expression of DDR genes. Univariate and LASSO regression analysis was used to develop a DDR-based predictive model. The prognostic significance of this model was assessed using Cox regression, Kaplan-Meier, and receiver operating characteristic (ROC) curve analyses. Bioinformatics analysis was performed to investigate the clinicopathological characteristics and immune profiles associated with this model. In vitro experiment was performed to testify the role of DDR genes in EGFRm NSCLC.
We identified two subtypes of EGFRm NSCLC: DDR-activated and DDR-suppressed. The DDR-activated subtype showed more aggressive clinical behavior and poorer prognosis and was more responsive to immunotherapy. A prognostic model for EGFRm NSCLC was constructed using four DDR genes: CAPS, FAM83A, IGLV8-61, and SLC7A5. The derived risk score could serve as an independent prognostic indicator. High- and low-risk patients exhibited distinct clinicopathological characteristics, immune profiles, and responses to immunotherapy. The T-cell inflammation and Tumor Immune Dysfunction and Exclusion (TIDE) scores differed between the high- and low-risk subgroups, with both showing enhanced effectiveness of immunotherapy in the low-risk subgroup. Targeted therapy such as BI.2536, an inhibitor of polo-like kinase 1, could be effective for patients with high-risk EGFRm NSCLC. Meanwhile, in vitro detection approved the role of DDR genes in EGFRm NSCLC response.
This study demonstrated a diversity of DDR genes in EGFRm NSCLC and developed a predictive model using these genes. This model could assist in identifying potential candidates for immunotherapy and in assessing personalized treatment and prognosis of patients with EGFRm NSCLC.
表皮生长因子受体突变(EGFRm)非小细胞肺癌(NSCLC)具有独特的“冷”免疫特征。DNA损伤修复(DDR)基因与许多肿瘤的肿瘤发生及免疫治疗效果密切相关。然而,DDR在EGFRm NSCLC发生发展中的作用及机制仍不清楚。
本研究纳入了来自癌症基因组图谱(TCGA)数据集的101例EGFRm NSCLC样本以及来自基因表达综合数据库(GEO)的GSE31210数据集(外部数据集)。基于DDR基因的表达,采用聚类分析来识别EGFRm NSCLC的不同亚型。使用单因素和LASSO回归分析建立基于DDR的预测模型。通过Cox回归、Kaplan-Meier分析和受试者工作特征(ROC)曲线分析评估该模型的预后意义。进行生物信息学分析以研究与该模型相关的临床病理特征和免疫特征。进行体外实验以验证DDR基因在EGFRm NSCLC中的作用。
我们识别出EGFRm NSCLC的两种亚型:DDR激活型和DDR抑制型。DDR激活型亚型表现出更具侵袭性的临床行为和更差的预后,并且对免疫治疗更敏感。使用四个DDR基因(CAPS、FAM83A、IGLV8-61和SLC7A5)构建了EGFRm NSCLC的预后模型。得出的风险评分可作为独立的预后指标。高风险和低风险患者表现出不同的临床病理特征、免疫特征以及对免疫治疗的反应。高风险和低风险亚组之间的T细胞炎症和肿瘤免疫功能障碍与排除(TIDE)评分不同,两者均显示低风险亚组中免疫治疗效果增强。靶向治疗如polo样激酶1抑制剂BI.2536可能对高风险EGFRm NSCLC患者有效。同时,体外检测证实了DDR基因在EGFRm NSCLC反应中的作用。
本研究证明了EGFRm NSCLC中DDR基因的多样性,并使用这些基因开发了一种预测模型。该模型可有助于识别免疫治疗的潜在候选者,并评估EGFRm NSCLC患者的个性化治疗和预后。