Lin Shu-Ling, Nie Qi-Chang, Law Carmen Oi-Kwan, Pham Hoa-Quynh, Chau Ho-Fai, Lau Terrence Chi-Kong
Department of Biomedical Sciences, College of Biomedicine, City University of Hong Kong, Hong Kong, China.
Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China.
mBio. 2025 Apr 9;16(4):e0381424. doi: 10.1128/mbio.03814-24. Epub 2025 Feb 25.
Small regulatory RNAs (sRNAs) in bacteria are crucial for controlling various cellular functions and provide immediate response to the environmental stresses. Antibiotic persistence is a phenomenon that a small subpopulation of bacteria survives under the exposure of a lethal concentration of antibiotics, potentially leading to the development of drug resistance in bacteria. Here, we reported a novel transposon-derived sRNA called stnpA, which can modulate fosfomycin persistence of the bacteria. The stnpA sRNA located in the transposon with its own promoter is highly conserved among the prevalent multidrug resistance (MDR) plasmids in various pathogenic bacteria and expressed in response to the fosfomycin stress. It can directly bind to the ABC transporter, YadG, whereas this protein-RNA interaction modulated the export of fosfomycin and led to the enhancement of bacterial persistence. According to our knowledge, stnpA is the first identified transposon-derived sRNA, which controlled antibiotic persistence of bacteria, and our work demonstrated that nonresistance genes on MDR plasmids such as plasmid-encoded sRNA can provide additional survival advantages to the bacterial host against the antibiotics. In addition, the stnpA sRNA can be potentially utilized as the druggable target for the development of novel therapeutic strategies to overcome bacterial persistence.
This study unveils a groundbreaking discovery in the realm of bacterial antibiotic persistence, highlighting the pivotal role of a newly identified small RNA (sRNA) called stnpA, which is a multidrug resistance plasmid-encoded transposon-derived sRNA that interacts directly with ABC transporter YadG to modulate the efflux of fosfomycin. Our findings elucidate a novel mechanism of small RNA-regulated fosfomycin persistence in bacteria that provides the potential pathway for the emergence of drug resistance in bacteria upon antibiotic treatment. Importantly, this study provides the first example of linking sRNA regulation to antibiotic persistence, presenting stnpA sRNA as a potential therapeutic target. This study underscores the critical role of noncoding RNAs in bacterial adaptation and offers valuable insights for developing new strategies to combat antibiotic persistence.
细菌中的小调节RNA(sRNA)对于控制各种细胞功能至关重要,并能对环境压力做出即时反应。抗生素持续性是指一小部分细菌在致死浓度的抗生素暴露下存活的现象,这可能导致细菌产生耐药性。在此,我们报道了一种新的转座子衍生的sRNA,称为stnpA,它可以调节细菌对磷霉素的耐受性。位于转座子上且有自身启动子的stnpA sRNA在各种病原菌中普遍存在的多药耐药(MDR)质粒中高度保守,并在磷霉素应激下表达。它可以直接与ABC转运蛋白YadG结合,而这种蛋白质-RNA相互作用调节了磷霉素的外排并导致细菌耐受性增强。据我们所知,stnpA是第一个被鉴定的转座子衍生的sRNA,它控制细菌的抗生素耐受性,我们的研究表明MDR质粒上的非抗性基因,如质粒编码的sRNA,可以为细菌宿主提供对抗生素的额外生存优势。此外,stnpA sRNA有可能被用作开发克服细菌耐受性的新治疗策略的可药物靶点。
本研究揭示了细菌抗生素耐受性领域的一项开创性发现,突出了一种新鉴定的小RNA(sRNA)——stnpA的关键作用,它是一种多药耐药质粒编码的转座子衍生的sRNA,直接与ABC转运蛋白YadG相互作用以调节磷霉素的外排。我们的发现阐明了细菌中小RNA调节磷霉素耐受性的新机制,这为抗生素治疗后细菌耐药性的出现提供了潜在途径。重要的是,本研究提供了第一个将sRNA调节与抗生素耐受性联系起来的例子,将stnpA sRNA作为一个潜在的治疗靶点。本研究强调了非编码RNA在细菌适应中的关键作用,并为开发对抗抗生素耐受性的新策略提供了有价值的见解。