Suppr超能文献

一种用于从心电图信号中诊断心律失常的轻量级一维卷积神经网络模型。

A lightweight 1D convolutional neural network model for arrhythmia diagnosis from electrocardiogram signal.

作者信息

Saha Tchinda Beaudelaire, Tchiotsop Daniel

机构信息

URAIA, Fotso Victor University Institute of Technology, University of Dschang, P.O Box 134, Bandjoun, Cameroon.

出版信息

Phys Eng Sci Med. 2025 Feb 25. doi: 10.1007/s13246-025-01525-1.

Abstract

Electrocardiogram (ECG) is used by cardiologist to diagnose heart diseases. The use of ECG signal in an artificial intelligence system can permit to automatically analyze these signals and thereby improve diagnosis quality. For this purpose, many models have been proposed in the literature. But many of these models are complex enough for implementation in an embedded system dedicated to medical diagnosis. Still others have performances that remain to be improved. To solve this problem of complexity, while improving performance, we propose a simple 1D convolutional neural network model for cardiac arrhythmia diagnosis. The proposed model combines two convolution layers, two max pooling layers, three dense layers, two dropout layers and a flatten layer. We apply the proposed model on the public MIT-BIH database for inter-patient classification of five distinct types of heartbeat rhythms which are consistent with the association for advancement of medical instrumentation (AAMI) standard. We also apply our model on the PTB database in order to evaluate its generalization capability. On the MIT-BIH database, the results provide an accuracy of 0.9842, a precision of 0.9523, a sensitivity of 0.8760, a specificity of 0.9869, a negative predictive value (NPV) of 0.9936, an average area under the ROC curve (AUC) of 0.99 and a F1-measure of 0.9095. The accuracy, precision, sensitivity, specificity, NPV, and AUC on the PTB dataset are 0.9924, 0.9938, 0.9957, 0.9844, 0.9892, and 1, respectively. Compared to other existing models, for unbalanced data, the performances obtained by our model are quite interesting for an inter-patient classification.

摘要

心电图(ECG)被心脏病专家用于诊断心脏病。在人工智能系统中使用ECG信号可以自动分析这些信号,从而提高诊断质量。为此,文献中提出了许多模型。但其中许多模型过于复杂,难以在专门用于医学诊断的嵌入式系统中实现。还有一些模型的性能仍有待提高。为了解决复杂性问题,同时提高性能,我们提出了一种用于心律失常诊断的简单一维卷积神经网络模型。所提出的模型结合了两个卷积层、两个最大池化层、三个全连接层、两个随机失活层和一个展平层。我们将所提出的模型应用于公共的MIT - BIH数据库,用于对与医学仪器促进协会(AAMI)标准一致的五种不同类型心跳节律进行患者间分类。我们还将我们的模型应用于PTB数据库,以评估其泛化能力。在MIT - BIH数据库上,结果提供了0.9842的准确率、0.9523的精确率、0.8760的灵敏度、0.9869的特异性、0.9936的阴性预测值(NPV)、0.99的ROC曲线下平均面积(AUC)和0.9095的F1值。在PTB数据集上的准确率、精确率、灵敏度、特异性、NPV和AUC分别为0.9924、0.9938、0.9957、0.9844、0.9892和1。与其他现有模型相比,对于不平衡数据,我们的模型在患者间分类中获得的性能相当可观。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验