Suppr超能文献

计算生物学预测了用于提高酵母中103种有价值化学品产量的代谢工程靶点。

Computational biology predicts metabolic engineering targets for increased production of 103 valuable chemicals in yeast.

作者信息

Domenzain Iván, Lu Yao, Wang Haoyu, Shi Junling, Lu Hongzhong, Nielsen Jens

机构信息

Department of Life Sciences, Chalmers University of Technology, Gothenburg SE41296, Sweden.

Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE41296, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2417322122. doi: 10.1073/pnas.2417322122. Epub 2025 Feb 25.

Abstract

Development of efficient cell factories that can compete with traditional chemical production processes is complex and generally driven by case-specific strategies, based on the product and microbial host of interest. Despite major advancements in the field of metabolic modeling in recent years, prediction of genetic modifications for increased production remains challenging. Here, we present a computational pipeline that leverages the concept of protein limitations in metabolism for prediction of optimal combinations of gene engineering targets for enhanced chemical bioproduction. We used our pipeline for prediction of engineering targets for 103 different chemicals using as a host. Furthermore, we identified sets of gene targets predicted for groups of multiple chemicals, suggesting the possibility of rational model-driven design of platform strains for diversified chemical production.

摘要

开发能够与传统化学生产工艺相竞争的高效细胞工厂是复杂的,并且通常由基于目标产品和微生物宿主的特定案例策略驱动。尽管近年来代谢建模领域取得了重大进展,但预测用于提高产量的基因改造仍然具有挑战性。在此,我们提出了一种计算流程,该流程利用代谢中蛋白质限制的概念来预测用于增强化学生物生产的基因工程靶点的最佳组合。我们使用我们的流程以[具体宿主]为宿主预测了103种不同化学品的工程靶点。此外,我们确定了针对多种化学品组预测的基因靶点集,这表明有可能对用于多样化化学生产的平台菌株进行合理的模型驱动设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06c/11892653/0a67a83a1c1f/pnas.2417322122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验